
Solving the least squares problem

We now return to the general least squares optimization problem1 of

minimize
x∈RN

‖y −Ax‖22, (1)

where A is an M ×N matrix and y ∈ RM .

In the context of linear regression, where N = 2, we were able to
derive a 2× 2 system of equations that we could then solve to obtain
a formula for the solution to the least squares problem. Here we
would like to do something similar for the general case.

Recall that our approach was based on computing the partial deriva-
tive of the objective function with respect to the two parameters we
were trying to estimate. If we want to take the same approach in the
general setting, we have N parameters to consider, and thus, there
are N partial derivatives to set to zero. In this case, the natural
way to organize our computations is using the gradient. Given a
function f : RN → R, we denote the gradient (with respect to x) of
f by

∇f (x) =


∂f(x)

∂x1
∂f(x)

∂x2...
∂f(x)

∂xN

 .
The gradient is just the vector in RN of partial derivatives with all
N components of x. If your multivariable calculus is rusty, see the
brief refresher at the end of these notes.

1Note that while this is the same problem as last time, we have exchanged
x in the place of α.
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We are now tempted to solve the least squares problem by computing
the gradient of the objective function in (1) and setting it equal to
zero to obtain a system of equations that will yield the solution to the
least squares problem. In particular, one can show (this is worked
out as an example at the end of these notes) that this gradient is
given by

∇‖y −Ax‖22 = 2AT(Ax− y)

Setting this equal to zero (or more specifically, a vector of zeros)
yields the system

ATAx = ATy.

If ATA is invertible, then simply inverting this gives us the formula

x̂ = (ATA)−1ATy.

You may recognize the formula (ATA)−1AT, which is one possible
formula for what is called the pseudo-inverse of A, and is often
denoted by A†. Provided that ATA is in fact invertible, this does
indeed provide the optimal least squares estimate, i.e., the solution
to (1).

We will discuss the properties of this estimate in much more de-
tail later, including a more careful discussion about what happens
if ATA is not actually invertible, but first I want to provide a bit
more justification as to why taking the gradient and setting it equal
to zero does in fact give us a solution to (1). Later in the course we
will generalize this argument to arbitrary convex functions, but it
is particularly simple in the least squares problem.

For convenience, let f (x) = ‖y−Ax‖22. Recall the fact that for any
(column) vector z ∈ RN , we can write ‖z‖22 = zTz. Thus, we can
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also write

f (x) = (y −Ax)T(y −Ax)

= yTy − (Ax)Ty − yTAx + (Ax)TAx

= yTy − xTATy − yTAx + xTATAx

= yTy − 2xTATy + xTATAx,

where above we use the following facts:

• For any matrices A and B, (A +B)T = AT +BT.

• For any matrices A and B, (AB)T = BTAT.

• Using the previous fact, we have xTATy = (yTAx)T. Since
these are scalars, we also have yTAx = (yTAx)T, and hence
xTATy = yTAx.

With this in hand, we consider a small perturbation f (x + u). Our
goal will be to show that if x̂ corresponds to a vector where∇f (x̂) =
0, then x must be a solution to (1), which is equivalent to showing
that

f (x̂) ≤ f (x̂ + u)

for any possible choice of u.

To do this, note that following the same argument as above we can
write

f (x̂ + u) = (y −Ax̂−Au)T(y −Ax̂−Au)

= (y −Ax̂)T(y −Ax̂)− 2(Au)T(y −Ax̂) + (Au)T(Au)

= ‖y −Ax̂‖22 − uT(2AT(y −Ax̂)) + ‖Au‖22
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Thus, we obtain

f (x̂ + u) = f (x̂) + uT(2AT(Ax̂− y)) + ‖Au‖22
≥ f (x̂) + uT(2AT(Ax̂− y)),

where the last inequality follows since (by the definition of a norm) we
have ‖Au‖22 ≥ 0. Now, recall that earlier we showed that ∇f (x) =
2AT(Ax− y). Thus, if ∇f (x̂) = 0, then from the above we have

f (x̂ + u) ≥ f (x̂) + uT∇f (x̂) = f (x̂).

Since this holds for any possible choice of u, this establishes that x̂
is indeed the minimizer of f and the solution to (1).

To summarize:

If the matrix ATA is invertible, then the optimization problem

minimize
x∈RN

‖y −Ax‖22

has solution
x̂ = (ATA)−1ATy.
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Review of multivariable calculus

Recall that for a differentiable function f : R→ R, the derivative
can be defined as

f ′(x) = lim
δ→0

f (x + δ)− f (x)

δ
.

When dealing with a function f : RN → R that is defined on N -
dimensional vectors, we can define the partial derivative with
respect to xn as

∂f (x)

∂xn
= lim

δ→0

f (x + δen)− f (x)

δ
,

where en is the nth “standard basis element”, i.e., the vector of all
zeros with a single 1 in the nth entry.

The gradient of a function f : RN → R can be viewed as the vector
of partial derivatives given by:

∇f (x) =


∂f(x)

∂x1
∂f(x)

∂x2...
∂f(x)

∂xN

 .

We will use the term gradient in two subtly different ways. Some-
times we use∇f (x) to describe a vector-valued function or a vector
field, i.e., a function that takes an arbitrary x ∈ RN and produces
another vector. However, we also use the term gradient, and the
same notation ∇f (x), to refer to vector given by the gradient at a
particular point x. So sometimes when we say “gradient” we mean a
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vector-valued function, and sometimes we mean a single vector, and
in both cases we use the notation ∇f (x). Which one will usually be
obvious by the context.2

Note that in some cases we will use the notation ∇xf (x) to indicate
that we are taking the gradient with respect to x. This can be helpful
when f is a function of more variables than just x, but most of the
time this is not necessary so we will typically use the simpler ∇f (x).

The gradient is one of the most fundamental concepts of this course.
We can interpret the gradient in many ways. One way to think of
the gradient when evaluated at a particular point x is that it defines
a linear mapping from RN to R. Specifically, given a u ∈ RN , we
can use ∇f (x) to define a mapping of u to R by simply taking the
inner product between the two vectors:

〈u,∇f (x)〉.

What does this mapping tell us? One can show (although we will
not prove this here) that it computes the directional derivative
of f in the direction of u, i.e.,

〈u,∇f (x))〉 = lim
δ→0

f (x + δu)− f (x)

δ
. (2)

This tells us how fast f is changing at x when we move in the
direction of u.

A related way to think of ∇f (x) is as a vector that is pointing in the
direction of steepest ascent, i.e., the direction in which f increases
the fastest when starting at x. To justify this, note that we just

2This is just like in the scalar case, where the notation f(x) can sometimes
refer to the function f and sometimes the function evaluated at x.
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observed that we can interpret 〈u,∇f (x)〉 as measuring how quickly
f increases when we move in the direction of u. How can we find
the direction u that maximizes this quantity? You may recall that
the Cauchy-Schwarz inequality tells us that

|〈u,∇f (x)〉| ≤ ‖∇f (x)‖2‖u‖2,

and that this holds with equality when u is co-linear with ∇f (x),
i.e., when u points in the same direction as ∇f (x). Specifically, this
implies that ∇f (x) is the direction of steepest ascent, and −∇f (x)
is the direction of steepest descent.

More broadly, this characterizes the entire sets of ascent/descent di-
rections. Suppose that f : RN → R is differentiable at x. If u ∈ RN

is a vector obeying 〈u,∇f (x)〉 < 0, then we say that u is a descent
direction from x, and for small enough t > 0,

f (x + tu) < f (x).

Similarly, if 〈u,∇f (x)〉 > 0, then we say that u is an ascent
direction from x, and for small enough t > 0,

f (x + tu) > f (x).

It should hopefully not be a huge stretch of the imagination to
see that being able to compute the direction of steepest ascent (or
steepest descent) will be useful in the context of finding a maxi-
mum/minimum of a function.

Examples:

1. Compute the gradient of f (x) = aTx.
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Note that

∂f (x)

∂xn
=

∂

∂xn
(a1x1 + · · · + aNxN) = an,

and thus ∇f (x) = a.

2. Compute the gradient of f (x) = xTx.

Note that

∂f (x)

∂xn
=

∂

∂xn
(x2

1 + · · · + x2
N) = 2xn,

and thus ∇f (x) = 2x.

One final note on the gradient. Here we adopt the convention that
the gradient is a column vector. This is probably the most common
choice and is most convenient in this class, but some texts will instead
treat the gradient as a row vector. The reason for this is that this
makes the gradient a special case of the Jacobian. For a vector-
valued function f : RN → RM , the Jacobian is the matrix of partial
derivatives

Df(x) =


∂f1(x)

∂x1

∂f1(x)

∂x2
· · · ∂f1(x)

∂xN
∂f2(x)

∂x1

∂f2(x)

∂x2
· · · ∂f2(x)

∂xN... ... . . . ...
∂fM (x)

∂x1

∂fM (x)

∂x2
· · · ∂fM (x)

∂xN

 .
Note that if f : RN → R, thenDf(x) = (∇f (x))T, i.e., the Jacobian
is simply the gradient, but treated as a row vector.

We will also occasionally need to make use of second derivatives. For
a function f : RN → R, this is captured by the Hessian, which is
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the matrix of all possible pairwise partial derivatives:

∇2f (x) =


∂2f(x)

∂x1∂x1

∂2f(x)

∂x1∂x2
· · · ∂2f(x)

∂x1∂xN
∂2f(x)

∂x2∂x1

∂2f(x)

∂x2∂x2
· · · ∂2f(x)

∂x2∂xN... ... . . . ...
∂2f(x)

∂xN∂x1

∂2f(x)

∂xN∂x2
· · · ∂2f(x)

∂xN∂xN

 .
Note that if we view the gradient ∇f (x) as a vector valued function
mapping from RN to RN , then the Hessian is the same as the Jacobian
of the gradient..

Example:
Compute the Hessian of f (x) = xTx.

Recall that
∂

∂xn
f (x) = 2xn.

Thus
∂2

∂xm∂xn
f (x) =

{
2 if m = n,

0 otherwise.

Or, more compactly, ∇2f (x) = 2I, where I is the N × N identity
matrix.

One final tool from multivariable calculus that will be incredibly
useful in this course (and that, once you understand it, makes the
algorithm for training a neural network seem incredibly obvious) is
the multivariate chain rule. Specifically, imagine we have f :
RN → RM and g : RK → RN . Now consider the composition of
these functions denoted by f ◦ g(x) = f (g(x)). Suppose we want
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to calculate the Jacobian (or gradient if M = 1) of f ◦ g. The
multivariate extension of the chain rule in this case tells us that:

Df◦g(x) = Df(g(x)) ·Dg(x).

Note that

• f ◦ g is a mapping from RK to RM , and x ∈ RK.

• Dg(x) is an N ×K matrix (the evaluation of the Jacobian of
g at x).

• Df(g(x)) is an M ×N matrix (the evaluation of the Jacobian
of f at g(x)).

• Df◦g(x) is an M ×K matrix, which matches what we expect
since f ◦ g : RK → RM , and is also what we get by multiplying
and M ×N matrix with an N ×K matrix.

Also note that if M = 1, this procedure returns a row vector. If we
wish to report the gradient as a column vector, then we can do this
simply by taking the transpose, so that

∇f ◦ g = (Df(g(x)) ·Dg(x))T = Dg(x)T ·Df(g(x))T.

Example:
Compute the gradient of ‖y −Ax‖22.

Define h = ‖y −Ax‖22. Note that h = f ◦ g where f (x) = xTx
and g(x) = y −Ax. We have already seen above that

Df(x) = (∇f (x))T = 2xT.
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It is also a simple consequence of the fact that ∇(aTx) = a to show
that

Dg(x) = −A.
Putting this together gives us

Dh(x) = Df(g(x)) ·Dg(x) = 2(y −Ax)T(−A).

Using convention that gradient is a column vector, by taking the
transpose and re-arranging, we have

∇‖y −Ax‖22 = 2AT(Ax− y).
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