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Regression and least squares

A fundamental problem in science and engineering that we have al-
ready encountered is to estimate a function given point samples (that
are possibly corrupted by noise). Recall that in this setting we ob-
serve pairs of points (xm, ym) for m = 1, . . . ,M , and want to find a
function f (x) such that

f (xm) ≈ ym, m = 1, . . . ,M.

Of course, the problem is not well-posed yet, since without any con-
straints on f , there are any number of functions for which f (xm) =
ym exactly. Thus, we typically specify a class that f belongs to.

Last time we considered the case where f was restricted to be a linear
function, i.e., f (x) = αx for some scalar α. Today we’ll begin by
just slightly generalizing this to the case where f can have a nonzero
intercept, i.e., it is of the form f (x) = α1x + α2. In this case f is
technically an affine function, although this approach is – somewhat
confusingly – most commonly referred to as linear regression.

Following the same procedure as last time, we will (for now) assume
that we wish to find the affine fit that minimizes the sum of squared
errors. In this case, we can write our optimization problem as

minimize
α1,α2∈R

M∑
m=1

(ym − α1xm − α2)
2. (1)

Since (1) is quadratic with respect to both α1 and α2, we can find
the minimum in a similar fashion as before, but now we must take
partial derivatives with respect to both variables, setting both of
these equal to zero, and solving for the minimizing α1 and α2.
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Towards this end, let

g(α1, α2) =
M∑
m=1

(ym − α1xm − α2)
2

and note that

∂

∂α1

g(α1, α2) = −2
M∑
m=1

xm(ym − α1xm − α2)

∂

∂α2

g(α1, α2) = −2
M∑
m=1

(ym − α1xm − α2).

Setting these both equal to zero and rearranging yields

M∑
m=1

xmym = α1

M∑
m=1

x2
m + α2

M∑
m=1

xm

M∑
m=1

ym = α1

M∑
m=1

xm + Mα2.

We can write this as a 2× 2 system of equations in matrix form as[∑M
m=1 x

2
m

∑M
m=1 xm∑M

m=1 xm M

] [
α1

α2

]
=

[∑M
m=1 xmym∑M
m=1 ym

]
.

Thus, we can obtain the solution to our optimization problem, which
we will denote by (α̂1, α̂2), by simply inverting this system, i.e., com-
puting [

α̂1

α̂2

]
=

[∑M
m=1 x

2
m

∑M
m=1 xm∑M

m=1 xm M

]−1 [∑M
m=1 xmym∑M
m=1 ym

]
.
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We can express the solution to this system in closed form by explicitly
computing the inverse. Using the notation

x̄ =
1

M

M∑
m=1

xm ȳ =
1

M

M∑
m=1

ym,

the solution to this system reduces to[
α̂1

α̂2

]
=

1∑M
m=1 x

2
m −Mx̄2

[ ∑M
m=1 xmym −Mx̄ȳ

ȳ
∑M

m=1 x
2
m − x̄

∑M
m=1 xmym

]
.

Of course, while an affine function is a natural model in many set-
tings, we may wish to consider functions f with higher-order features
(e.g., a quadratic) or using any number of other features. We can
extend the framework above whenever our model for f is that it
consists of a linear combination of some set of functions φn(·):

f (x) =
N∑
n=1

αnφn(x).

The functions φn could be polynomials, sinusoids, exponentials, or
anything else that might be appropriate given the application. We
now fit our function by solving for the “best” coefficients α1, . . . , αN .
There is a classical complexity versus robustness trade-off in choosing
the number N of functions that we are going to use to fit the data –
generally speaking, letting N be large gives us a richer class of func-
tions with more expressive power, but leads to a harder estimation
problem requiring more data if we want our estimate to be accurate.

As before, we want to select the coefficients so that f (xm) ≈ ym for
all m. We can express this using vector notation by letting r ∈ RM
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denote the vector whose mth entry is

rm = ym −
N∑
n=1

αnφn(xm).

We want r to be “small”. The approach we have taken so far has
been to measure the “size” of r using the sum of the squares of the
elements in r. However, it is important to note that there are many
other possible choices. There is an entire family of functions, called
norms, that provide a way to talk about the size of a vector. (See
the technical details at the end of these notes for a quick overview.)
The approach we have taken so far has been to minimize ‖r‖2, or
equivalently, ‖r‖22, where ‖ · ‖2 is the Euclidean norm:

‖r‖2 =

√√√√ M∑
m=1

r2m.

Next, consider the M ×N matrix A and the N × 1 vector α:

A =


φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

... ... . . . ...
φ1(xM) φ2(xM) · · · φN(xM)

 α =


α1

α2
...
αN


A maps a set of coefficients α ∈ RN to a set of M predictions for the
vector of observations y ∈ RM . Using this notation, we can write

r = y −Aα.
Using this notation, finding the α that minimizes the squared error
is now reduced to the standard least squares problem:

minimize
α∈RN

‖y −Aα‖22.

Next time, we will consider how to actually solve this problem.
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Linear Algebra Review I: Vector spaces, norms,
and inner products

Linear algebra has become as basic and as applicable
as calculus, and fortunately it is easier.

– Gilbert Strang

Linear algebra is the branch of mathematics that deals with solving
systems of equations, with matrices and vectors being the key objects
of study. But what exactly is a vector? Two intuitive ways of think-
ing about a vector might come to mind. First, the kind of vector we
encounter in solving a system of equations is simply a list of numbers.
However, the other place you have likely encountered this idea is in
Euclidean geometry or physics, where a vector typically refers to a
(directed) line segment between two points. The fact that we can
use the same word for both of these concepts is chiefly due to the
revolutionary idea of René Descartes that we can describe geometry
via their coordinates, i.e., a list of numbers (a vector).

Descartes initiated what might be called the “algebraization” of ge-
ometry: if we can describe geometry in terms of vectors, then we can
reduce geometric problems to ones of algebra. Beginning in the 19th

century, mathematics began trending in a different direction, lead-
ing to a “geomertrization” of algebra: extending the equivalence
between geometry and vectors, we can apply geometric concepts to
lists of numbers. It is now common to apply geometric notions such
as length, distance, and angle from three-dimensional space to vec-
tors that live in much higher-dimensional (even infinite-dimensional)
spaces.
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In order to do this, mathematicians needed to form a more abstract
and precise definition of what we mean by a vector and the kind of
sets of vectors where such geometric notions make sense. The basic
building block here is the vector space. We will not worry too
much about defining this in all of its abstract glory, but informally, a
vector space S is a set of elements, called vectors, that has rules
for adding vectors and multiplying them by scalars.1

These rules mostly just capture familiar properties that we would
expect of addition (e.g., it is commutative and associative) and mul-
tiplication (e.g., distributive and associative). The most salient re-
quirement is that the set S of vectors must be closed under vector
addition and scalar multiplication, which simply means that adding
two vectors (or multiplying a vector by a scalar) will produce another
vector in S . This requirement is called linearity, since it implies that
we can take arbitrary linear combinations of vectors without produc-
ing nonsense, and as a result vector spaces are also often known as
linear vector spaces or linear spaces.

The simplest example of a vector space, and the most important
one for this course, is RN , i.e., the set of vectors consisting of lists
of N real numbers, with the usual notions of vector (element-wise)
addition and scalar multiplication (with real-valued scalars). To see
the value of this more abstract definition, note that the following are
also valid vector spaces:

• The set of infinite-length sequences.

• The set of polynomials of degree p.

• The set of continuous functions on the real line.

• The set of functions bandlimited to Ω.
1Most commonly, a scalar simply refers to a real or complex number.
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An important detail to keep in mind is that not all sets of vectors
actually qualify as a vector space – typically because the set fails
to be closed. For example, the set of vectors in R2 that live within
the unit circle is not a vector space. To see why not, think about
whether all linear combinations of such vectors will also live within
the unit circle.

While the definition of a vector space described above generalizes
some of our intuition from Euclidean space, we gain much more by
also defining a norm together with our vector space. A norm allows
us to talk about the length of a vector or the distance between two
vectors.2

Definition. A norm ‖·‖ on a vector space S is a function ‖·‖ that
maps a vector in S to a real number with the following properties
for all x,y ∈ S:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0.

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

3. ‖ax‖ = |a| · ‖x‖ for any scalar a (homogeneity)

Other related definitions:

• The length of x ∈ S is simply ‖x‖ .

• The distance between x and y is ‖x− y‖.
• A vector space in which we have defined a norm is called a

normed vector space.

2A fancy mathematical way to say this is that a norm adds a layer of topo-
logical structure on top of the algebraic structure defining a vector space.
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Examples:

1. S = RN ,

‖x‖2 =

(
N∑
n=1

|xn|2
)1/2

This is called the “`2 norm”, or “standard Euclidean norm”

In R2:

x

y

‖x−y‖2 =
√

(x1 − y1)2 + (x2 − y2)2

2. S = RN

‖x‖1 =
N∑
n=1

|xn|

This is the “`1 norm” or “taxicab norm” or “Manhattan norm”

In R2:

x

y

‖x− y‖1 = |x1 − y1| + |x2 − y2|
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3. S = RN

‖x‖∞ = max
n=1,...,N

|xn|

This is the “`∞ norm” or “Chebyshev norm”

In R2:

x

y

‖x−y‖∞ = max (|x1 − y1|, |x2 − y2|)

4. S = RN

‖x‖p =

(
N∑
n=1

|xn|p
)1/p

for some 1 ≤ p <∞

This is the “`p norm”.

5. The same definitions extend to infinite sequences:
S = discrete-time signals x[n] indexed by the integers n ∈ Z

‖x[n]‖p =

( ∞∑
n=−∞

|x[n]|p
)1/p

We also call this the “`p norm” – the fact that x[n] is an infinite
sequence is generally understood from the context.
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6. The same idea can extend to continuous signals:
S = continuous-time signals on the real line

‖x(t)‖2 =

(∫ ∞
−∞
|x(t)|2 dt

)1/2

This is called the L2 norm.3 Similarly, we can define the more
general Lp norms as

‖x(t)‖p =

(∫ ∞
−∞
|x(t)|p dt

)1/p

.

A norm gives us a way to think about distances in a vector space.
We can also talk about the angle between two vectors if we introduce
the notion of an inner product.

Definition: An inner product on a real-valued vector space S
is a function 〈·, ·〉 that that maps a pair of vectors in S to a real
number that satisfies the following properties for all x,y ∈ S:

1. 〈x,y〉 = 〈y,x〉

2. For any a, b ∈ R

〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉

3. 〈x,x〉 ≥ 0 and 〈x,x〉 = 0⇔ x = 0

Note that by “real-valued”, we mean the scalar associated with scalar
multiplication is a real number. You can easily extend these defini-
tions to a complex-valued vector space, but since we will not need

3The L is for Lebesgue, the mathematician who formalized the modern
theory of integration in the early 1900s.
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this level of generality in this course we will stick with the simpler
real-valued case.

Standard Examples:

• S = RN ,

〈x,y〉 =
N∑
n=1

xnyn = yTx

• S = continuous-time signals on the real line

〈x,y〉 =

∫ ∞
−∞

x(t)y(t) dt

Slightly less standard example:

• S = RM×N (the set of M ×N matrices with real entries)

〈X,Y 〉 = trace(Y TX) =
M∑
m=1

N∑
n=1

Xm,nYm,n

(Recall that trace(X) is the sum of the entries on the diagonal
of X .) This is called the trace inner product or Frobenius
inner product or Hilbert-Schmidt inner product.

A vector space equipped with an inner product is called an inner
product space. Inner products allow us to think about angles
between vectors in arbitrary vector spaces – most importantly, we
can generalize the notion of orthogonality from Euclidean space to
an arbitrary inner product space: two vectors x,y are orthogonal
if 〈x,y〉 = 0.
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Induced norms

A valid inner product induces a valid norm by

‖x‖ =
√
〈x,x〉

(You can check that
√
〈x,x〉 indeed satisfies the properties required

of a norm on your own as an exercise.)

It is not hard to see that in RN , the standard inner product induces
the `2 norm, i.e.,

√
xTx = ‖x‖22.

Properties of induced norms

In addition to the triangle inequality,

‖x + y‖ ≤ ‖x‖ + ‖y‖,
which all norms must obey, induced norms obey some very handy
inequalities. Below I give two of the most famous and useful ones.
Note that these are not necessarily true for norms in general, only
for norms induced by an inner product:

• Pythagorean Theorem

〈x,y〉 = 0 ⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2

The left-hand side above also implies that
‖x− y‖2 = ‖x‖2 + ‖y‖2.

• Cauchy-Schwarz Inequality

|〈x,y〉| ≤ ‖x‖ ‖y‖
Equality is achieved above when (and only when) x and y are
colinear:

∃ a ∈ R such that y = ax.
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A note on matrix multiplication

Although you have certainly encountered these concepts already, now
is a good time to review some basic notions involving how we think
about matrix multiplication. When dealing with simple matrix-
vector products, these ideas are straightforward, but as we get to
increasingly complex matrix factorizations, it can be harder to break
down what is happening.

Matrix-vector multiplication

Let’s begin by considering simple matrix-vector multiplication Ax.
There are really two ways to think about this. First, suppose that
A is an M ×N matrix. We can think of A as the concatenation of
N columns, denoted by a1,a2, . . . ,aN :

A =

 | | |
a1 a2 · · · aN
| | |

 .
The first way of thinking of a matrix-vector multiplication is that
Ax is a weighted combination of the columns of A:

 | | |
a1 a2 · · · aN
| | |



x1

x2
...
xN

 = x1a1 + x2a2 + · · · + xNaN .

To describe the second way of thinking of a matrix-vector multipli-
cation, we are going to slightly abuse our notation. Even though we
just said an was a column of A, which is what we will do for the rest
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of the course, note that we can also break up a matrix by along its
rows, which we will (just for now) denote by aT

1 ,a
T
2 , . . . ,a

T
M :

A =


— aT

1 —
— aT

2 —
...

— aT
M —

 .
We use a transpose when referring to the rows since normally am
always refers to a column vector. This way of writing A suggests an
alternative way to think about matrix-vector multiplication. That
is, each entry of Ax is the inner product between the rows of A and
the vector x: 

— aT
1 —

— aT
2 —
...

— vT
M —


 |x
|

 =


aT
1x
aT
2x
...

aT
Nx

 .

Matrix-matrix multiplication

Likewise, the product of an M ×N matrix A and a N × P matrix
B can be thought of in two different ways. The traditional way (how
you would compute the elements of AB one entry at a time) is as
a collection of the inner products between all of the rows of A and
all of the columns of B. If we continue to be a little loose with our
notation, we can visualize this as:

— aT
1 —

— aT
2 —
...

— aT
M —


 | | |
b1 b2 · · · bP
| | |

 =


aT
1 b1 aT

1 b2 · · · aT
1 bP

aT
2 b1 aT

2 b2 · · · aT
2 bP

... ... . . . ...
aT
Mb1 a

T
Mb2 · · · aT

MbP

 .
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However, just as with matrix-vector multiplication, there are alter-
native perspectives. We think of each column of AB as being the
result of a matrix-vector product that combines the columns of A:

A

 | | |
b1 b2 · · · bP
| | |

 =

 | | |
Ab1 Ab2 · · · AbP
| | |

 .
Similarly, we can also think of each row of AB as a linear combina-
tion of the rows of B:

— aT
1 —

— aT
2 —
...

— aT
M —

B =


— aT

1B —
— aT

2B —
...

— aT
MB —

 .
Finally, there is a fourth way to think of matrix-matrix multiplica-
tion, as a sum of the rank 1 matrices formed by taking the outer
product of the columns of A with the rows of B:

 | | |
a1 a2 · · · aN
| | |




— bT1 —
— bT2 —

...
— bTN —

 =
N∑
n=1

anb
T
n .

To see this, consider just a1 and what it contributes to AB. Each
column ofAB will potentially have some contribution from a1. Just
how much? Well, it’s the first row of B that will determine this for
each column. The same argument follows for each of the N columns
of A and rows of B.
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