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Much of modern engineering can be understood as the principled
design of systems built for the purpose of manipulating information.
There are countless examples of such systems – here are a few that
we will encounter in this course:

• filters that can remove “noise” to extract a “clean” estimate of
a signal;

• systems that process measurements to estimate an object’s lo-
cation (e.g., GPS, RADAR);

• devices for decoding an encoded digital signal that has been
corrupted by errors;

• systems that can automatically monitor and control the behav-
ior of another system or device;

• methods for learning to make predictions and/or decisions based
on “training data”;

• autonomous systems that monitor an environment to perform
tasks independently.

Whenever we are designing such a system, we naturally want to do
the best that we possibly can. We want a filter that minimizes distor-
tion, the optimal estimate of a position, an estimate of a transmission
that minimizes the probability of error, etc. Solving such problems
involves the use of optimization. In this course we will explore
the mathematical foundations of this field. We will soon be more
formal about what exactly an “optimization problem” consists of,
but a useful informal definition is something along the lines of “a
problem where we wish to select the best element from some set of
possibilities.”
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Let’s give a concrete example of this that demonstrates a possible
use of optimization in a real (if not particularly modern) problem.
A classic result in physics due to Galileo Galilei is that an object
in free-fall experiences uniform acceleration in time. Specifically, the
notion of uniform acceleration means that the change in speed should
be linearly proportional to the amount of time that has passed, and
as a consequence that the distance an object falls should be propor-
tional to the square of the amount of time that has passed. In 1638,
Galileo argued in his book Dialogues Concerning Two New Sci-
ences that this ought to be the case on philosophical grounds (by
appealing to Aristotle). But Galileo went further: he argued that
one can experimentally verify that bodies in nature really do in fact
experience uniform acceleration!

Galileo provided a nice description of how this was done. He con-
structed an inclined ramp with marks indicating the points 1
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, and all the way down the ramp. He then repeatedly rolled a ball

down the ramp, recording the amount of time required for the ball
to reach each point (as determined using a water clock that mea-
sured the volume of water dripping out of a small spout). Below I
illustrate the results from a contemporary recreation of this exper-
iment.1 We can conclude from visual inspection of the results that
the data clearly support Galileo’s claim. However, note that there is
not a perfect agreement between the data and the linear fit to the
data that I have also included in the figure. This might raise many
questions, including: How did I actually decide on the slope of this
linear fit? Is there any sense in which one could determine the “best”
fit? While not the approach taken by Galileo, this leads us directly
to an example of the role played by optimization in science today.

1S. Straulino. “Reconstruction of Galileo Galilei’s experiment: The inclined
plane.” Physics Education, 43(3) 316, 2008.
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In particular, suppose we observe pairs of points (xm, ym) for m =
1, . . . ,M , and want to find a function f (x) of the form f (x) = αx
such that

f (xm) ≈ ym, m = 1, . . . ,M.

To pose this as an optimization problem, we must quantify what we
mean by “≈”. There are many choices here, but a particulary com-
mon one is to measure our “approximation error” using the square
of the difference between the observed value ym and its prediction
using f (xm), averaged over all the observations. Mathematically, we
can write this as

1

M

M∑
m=1

(ym − f (xm))2,
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or in the case where f (x) is of the form f (x) = αx,

1

M

M∑
m=1

(ym − αxm)2. (1)

We are finally ready to pose this as an optimization problem: if we
would like to obtain the “best” linear fit to our data in the sense of
squared error, we need to choose α to minimize (1). We can write
this as

minimize
α∈R

1

M

M∑
m=1

(ym − αxm)2. (2)

This is precisely the problem that I solved to create the optimal linear
fit in the figure above. You may remember from calculus how to go
about solving this: we are trying to find the minimum of a quadratic
function of α, and this will occur precisely at the point where the
derivative with respect to α is equal to zero, i.e., when

− 1

M

M∑
m=1

2xm(ym − αxm) = 0.

Simplifying, this yields the following formula for the optimal α, which
we will denote by α̂:

α̂ =

∑M
m=1 xmym∑M
m=1 x

2
m

.

This is an example of a relatively simple optimization problem where
we can use tools from calculus to directly find a simple formula for
the solution. As we will soon see, however, we are not always so
lucky.
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Mathematical optimization

We have just encountered our first optimization problem of the course.
Optimization problems arise any time we have a collection of elements
and wish to select the “best” one (according to some criterion). The
process of casting a real world problem as being one of mathematical
optimization consists of three main components

1. a set of variables, often called decision variables, that we
have control over;

2. an objective function that maps the decision variables to
some quality that we want to maximize (goodness of fit, profit,
etc.) or some cost that we want to minimize (error, loss, etc.);
and

3. a constraint set that dictates restrictions on the decision
variables imposed by physical limitations, budgets on resources,
design requirements, etc.

In its most general form, we can express such an optimization prob-
lem mathematically as

minimize
x

f (x) subject to x ∈ X , (3)

where f : X → R is our objective function and X is our constraint
set. Compare this with the problem described above in (2).

In order to solve this optimization problem, we must find an x̂ ∈ X
such that

f (x̂) ≤ f (x) for all x ∈ X . (4)

We call an x̂ satisfying (4) a minimizer of f in X , and a solution
to the optimization problem (3).
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By convention, we will focus only on minimization problems, noting
that x̂maximizes f in X if and only if x̂ minimizes −f in X — thus
any maximization problem can be easily turned into an equivalent
minimization problem.

There are a number of fundamental questions that arise when consid-
ering an optimization problem of the form (3). Our primary interest
will be in developing efficient procedures for computing a/the solu-
tion to (3). However, we will also need to address more fundamental
questions along the way, such as when we can guarantee that a solu-
tion even exists, and if so, when we can expect it to be unique. We
will begin by exploring these questions in the context of a concrete
problem that is ubiquitous in modern science and engineering: least
squares optimization.
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