ECE 3803, Fall 2021
Homework #5

Due Thursday, November 4, at 11:59pm

1. Prepare a one paragraph summary of what we talked about in class since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and establish
context (Why is what we have learned relevant? How does it connect with other classes?).
The more insight you give, the better.

2. In the notes we showed that the subdifferential of ||z||; at @ is given by vectors u that satisfy

un = sign(zy,) if z, # 0,
lun| <1 if x,, = 0.

Note that we could also write this as
Ozl = {u : ullo =1, u'z =[]} .
It turns out that the subdifferential of ||x||~ takes the related form:
Ol@lloc = {u : Jlulli =1, uz = ||}

(a) Describe a simple procedure for constructing a vector u € 9||x||~ from .
(b) Show that if u satisfies |ul|; = 1 and uTx = ||z, then it must be a subgradient.

(c) (Optional.) Provide an argument that if u is a subgradient of ||| o, then it must satisfy
|uli =1 and vtz = ||2|0o.

3. We have now spent quite a while looking at least squares problems where we aim to minimize
| Az — b||2. While minimizing the f5 norm of the error is often a good idea, a big part of why
it is so popular is just that it is easy to minimize. But now that we know about nonsmooth
optimization, we can explore situations where other ¢, norms might be more appropriate.
In particular, we will consider minimizing ||Az — b||; and ||Ax — b||« using the subgradient
method.

(a) In the notes we described how to construct a subgradient for || Az — b||;. Using a similar
approach (and guided by the previous problem) show how to construct a subgradient
for || Az — bl -

(b) Download the file hwO6_prob3.py. This file sets up a simple regression problem in which
b consists of noisy observations of a smooth function f(¢) and considers three noise
models: Gaussian noise, sparse Gaussian noise, and uniform noise. Compute and plot
the least squares solution for each case.

(¢) Now implement subgradient descent for ||Axz — b||;. Use a backtracking line search to
set the step size ay. Note that there are two related implementation challenges to think
about. First, you can pick any subgradient. This gives you some freedom whenever an
entry of Ax — b is equal to zero. Feel free to pick any rule you like here. The other

1

Last updated 11:55, October 30, 2021

consideration is that, unless you are lucky, your procedure for selecting a subgradient
will not necessarily result in a subgradient of 0 at the solution. Thus, the norm of the
subgradient is not a good test for convergence. Instead you can either check to see when
the objective function stops improving or when the iterates x; stop changing. (You
should probably check this to make sure it is constant for several iterations in a row.)
Compute and plot the resulting estimate of & for each of the three noise cases.

(d) Next repeat the implementation process from part (c) for ||Az — b||o. Again, compute
and plot the results for each of the three noise cases.

(e) Compare the results that you obtained in the previous parts. Which method seems best
suited for each case?

4. In the notes (on page 86) we claimed (without proving) that the prox operator for the ¢;
norm

. 1 2
pr0%,4(2) = arg min (s + ol — =13
zeRN (6

is given by
prox,;,(z) = Tra(2),

where T, is the soft-thresholding operator, whose n' entry is given by

Zn —TQ, 2Zn > TQ,
[TTCV(Z)]n = 07 ’zn’ S TO[,

Zn + T, 2z < —Ta.

Prove that * = T;,(z) is indeed a minimizer of

1
fl@) =zl + 5z - 213

by showing that 0 € Jf(x*). [Note: Of(x) in this problem is just a special case of the
subdifferential calculated on page 71 of the notes.]

5. The LASSO. In this problem you will implement both subgradient descent and proximal
gradient descent to solve the LASSO:

1
minimize ||y — Az||% + 7||z||;.
imimize |y — Aal3 + /]
You will evaluate your code by testing it on the problem defined by the following code:

import numpy as np

np.random.seed(2021) # Set random seed so results are repeatable
Set parameters

100

1000

10

M
N
S

Define A and y

2

Last updated 11:55, October 30, 2021

A = np.random.randn(M,N)

ind0 = np.random.choice(N,S,0) # index subset
x0 = np.zeros(N)

x0[ind0] = np.random.rand(S)

y = A@x0 + .25%np.random.randn (M)

In all of the problems below, set 7 = 1.5.

(a) Implement subgradient descent for this problem. Produce a plot showing the value of
the objective function as a function of iteration number. Show results for the following
step size selection rules: ap = o, a = a/\/E, ar = a/k. For each rule tune a to get
reasonable performance.

(b) Implement the proximal gradient method for this problem (without acceleration). Use
a fixed step size a. You may tune this manually, but there is also a principled choice.
Produce a plot showing the value of the objective function as a function of iteration
number.

(¢) Implement the proximal gradient method with acceleration. Use the same choice of «
as in the previous part and use the rule gy = (kK — 1)/(k + 2). Produce a plot showing
the value of the objective function as a function of iteration number.

3

Last updated 11:55, October 30, 2021

