
ECE 3803, Fall 2021

Homework #3

Due Tuesday, September 21, at 11:59pm

1. Prepare a one paragraph summary of what we talked about in class in the last week. I do not
want just a bulleted list of topics, I want you to use complete sentences and establish context
(Why is what we have learned relevant? How does it connect with other classes?). The more
insight you give, the better.

2. Recall the Tikhonov regularized least squares problem

minimize
x∈RN

‖y −Ax‖22 + δ‖x‖22.

In this problem we will justify the formulas for the solution to this problem given on page 50
in the notes.

(a) Show that the Tikhonov regularized least squares problem can be rewritten in the format
of a standard least squares problem

minimize
x∈RN

‖ỹ − Ãx‖22

for an appropriate choice of Ã and ỹ.

(b) Derive the solution x̂ = (ATA + δI)−1ATy from the formula for the solution to the
standard least squares problem together with the Ã and ỹ computed in part (a). [Hint:
a useful fact here is that if

Ã =

[
A
B

]
then

Ã
T
Ã = ATA + BTB.

You do not need to prove this, but you should convince yourself that it is true.]

(c) Derive the formula x̂ = V (Σ2 + δI)−1ΣUTy by plugging A = UΣV T into the formula
in part (b). In this problem, assume that R = N .1 [Hint: recall that if A,B,C are
invertible matrices, then (ABC)−1 = C−1B−1A−1.]

(d) In the notes I also claimed that another formula for the solution to the Tikhonov reg-
ularized least squares problem was x̂ = AT(AAT + δI)−1y. Show that by plugging
A = UΣV T, you arrive at the same formula as in part (c). In this problem, assume
that R = M .

1This result is actually true for any M , N , and R, but I’m only asking you to prove it in the full-rank case because
it’s a slightly simpler argument. The fact that this makes the argument is a hint. What extra fact about the SVD
holds when R = N?
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3. In the notes we showed that when using the truncated SVD, we could decompose the error
that we incur as a result of noise into “noise error” and “approximation error” terms of the
form

x̂trunc − x̂clean =

R′∑
r=1

1

σr
〈e,ur〉vr +

R∑
r=R′+1

−〈x,vr〉vr.

Show that a similar decomposition is possible for Tikhonov regularization. Specifically, derive
an expression of the form

x̂tik − x̂clean =
R∑

r=1

〈e,ur〉vr +
R∑

r=1

〈x,vr〉vr.

4. In class we saw that when the smallest singular value σR of a matrix A gets very small,
the least squares solution can be extremely sensitive to even small perturbations. The two
strategies that we discussed for handling this were using a truncated SVD and Tikhonov
regularization.

In this problem I would like you to explore using these ideas to “stabilize” the reconstruction
problem from problem 7(c) in Homework #2.

(a) First consider the truncated SVD approach. Specifically, set M = 21 and form the
system of equations y = Xa required to interpolate a polynomial of degree 20. However,
rather than computing â = X†y = X−1y, compute the SVD of X and then compute

âtrunc = V R′Σ−1R′ U
T
R′y

for choices of R′ ranging from 1 all the way up to 21. Comment on which value of R′

gives the best estimate of the original f(x)? How does this compare to the result you
obtained in problem 7(c) in the last homework where you instead chose a smaller value
of M? Look at the singular values of X (or the singular values for the X matrix formed
when M is set to be smaller than 21) and comment if you observe anything interesting.

(b) Next repeat this process but using Tikhonov regularization. Consider a range of values
for the parameter δ and comment on which value works best. Compare these results to
those from part (a).

5. In this problem you will write Python functions that implement two variants of gradient
descent for the least squares problem. Each function should take as input a generic matrix A
and vector y, an initial guess x0, and stopping criteria (I would include both a tolerance ε as
well as a maximum number of iterations, just in case). While you wouldn’t normally save the
results of each iteration, to help you understand what is going on, your code should return
an array containing the sequence of iterates x0,x1, . . ..

As I said above, I would like you to implement two variants. One should be what was described
in the notes. (You can implement either version 1 or 2 – the problems we will be working
on here are not going to be big enough for the computational difference to be noticeable.
Remember that the “inputs” to those algorithms should be H = ATA and b = ATy.)
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The other variant should be gradient descent with αk set to a fixed constant. In the context
of least squares, we can work out analytically what a good value for each step size is, but we
will see later that in many optimization problems, finding such an analytical solution may
not be possible. Here we will see what kind of impact this can have. Note that your version
with a fixed step size will need an additional input (the step size α).

(a) First let’s test both versions on the simplest possible least squares problem I can think
of

A =

[
1 0
0 1

]
y =

[
1
1

]
.

Hopefully just by looking at this problem you can see that the solution to

minimize
x∈RN

‖y −Ax‖22

will just be x̂ = y = [1, 1]T. Verify that this is indeed what both versions of your code
produces when using an initial estimate of x0 = 0. Report how many iterations are
required for both versions, reporting the results for several different values of the step
size in the fixed step size version. What step size gives you the best performance here?

(b) Let’s make the problem a little more interesting and consider

A =

[
1 0.99

0.99 1

]
y =

[
1.99
1.99

]
.

It may not be quite as obvious this time, but it should be clear that in this case we
still have a solution of [1, 1]T. Compute the condition number κ(A). Based on our
discussion in class, what does this tell us about how many iterations we might expect
to need compared to the previous problem? Try out both versions of the algorithm and
report how many iterations are required. If the answer is not what you expected, can
you hypothesize why?

(c) Let’s consider one more tweak of this problem:

A =

[
1 0.99
1 1.01

]
y =

[
1.99
2.01

]
.

The solution remains [1, 1]T. Again, compute the condition number κ(A), and try out
both versions of the algorithm, reporting how many iterations are required. What is
different from the previous problem? (If you are struggling to explain what is happening,
it may help to plot the iterates together with a contour plot of the least squares objective
function, and/or to experiment with different starting points for x0.

(d) In part (c), you may need to set the tolerance parameter ε to be very small in order to
avoid having the algorithm terminate at a point xk where xk is still quite far from the
true solution. Explain why this is necessary?

(e) Let’s consider one last version of this problem:

A =

[
2 −1
0 −1

]
y =

[
−1
−1

]
.

Again, the solution remains [1, 1]T. As before, compute the condition number κ(A),
and try out both versions of the algorithm, reporting how many iterations are required.
Comment on how many iterations are required compared to part (c), and if possible,
provide an intuitive explanation for the difference.
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