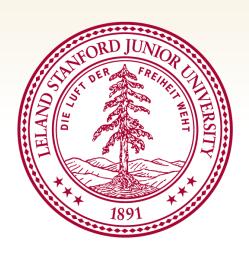
# The Pros and Cons of Compressive Sensing

Mark A. Davenport

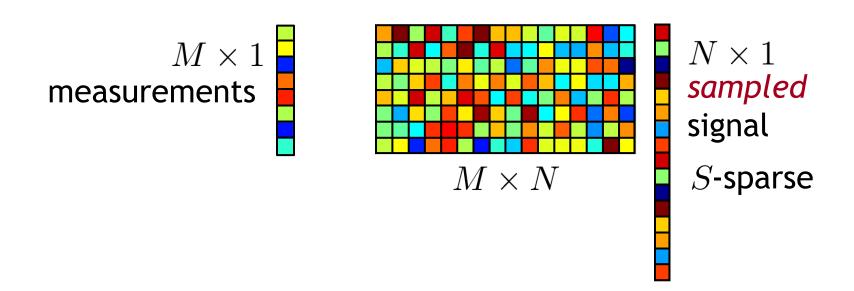
Stanford University
Department of Statistics



# **Compressive Sensing**

Replace samples with general *linear measurements* 

$$y = \Phi x$$



What are the pros and cons of "CS" in practice?

# Compressive Sensing: An Apology

Objection 1: CS is discrete, finite-dimensional

**Objection 2:** Impact of noise

**Objection 3:** Impact of quantization

### Analog Sensing is Matrix Multiplication

If x(t) is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n = -\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$M \times 1 \qquad \vdots \qquad \vdots \qquad \vdots$$

$$N \times 1$$

 $M \times N$ 

Φ

 $N \times 1$  vector Nyquist-rate samples of x(t)

# Compressive Sensing: An Apology

Objection 1: CS is discrete, finite-dimensional

**Objection 2:** Impact of noise

Objection 3: Impact of quantization

### Recovery from Noisy Measurements

Given 
$$y = \Phi x + e$$
 or  $y = \Phi(x + n)$ , find  $x$ 

- Optimization-based methods
  - basis pursuit, basis pursuit de-noising, Dantzig selector

$$\widehat{x} = \underset{x \in \mathbb{R}^N}{\arg \min} \|x\|_1$$
  
s.t. 
$$\|y - \Phi x\|_2 \le \epsilon$$

- Greedy/Iterative algorithms
  - OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...

# Stable Signal Recovery

Suppose that we observe  $y = \Phi x + e$  and that  $\Phi$  satisfies the RIP of order 2S.

$$(1 - \delta) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta) \|x\|_2^2 \qquad \|x\|_0 \le 2S$$

Typical (worst-case) guarantee

$$\|\widehat{x} - x\|_2^2 \le C\|e\|_2^2$$

Even if  $\Lambda=\mathrm{supp}(x)$  is provided by an oracle, the error can still be as large as  $\|\widehat{x}-x\|_2^2=\|e\|_2^2/(1-\delta)$ .

# Stable Signal Recovery: Part II

Suppose now that  $\Phi$  satisfies

$$A(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le A(1+\delta)\|x\|_2^2 \qquad \|x\|_0 \le 2S$$

In this case our guarantee becomes

$$\|\widehat{x} - x\|_2^2 \le \frac{C}{A} \|e\|_2^2$$



Unit-norm rows 
$$\|\widehat{x} - x\|_2^2 \le C \frac{N}{M} \|e\|_2^2$$

### **Expected Performance**

- Worst-case bounds can be pessimistic
- What about the average error?
  - assume e is white noise with variance  $\sigma^2$

$$\mathbb{E}\left(\|e\|_2^2\right) = M\sigma^2$$

- for oracle-assisted estimator

$$\mathbb{E}\left(\|\widehat{x} - x\|_2^2\right) \le \frac{S\sigma^2}{A(1 - \delta)}$$

- if e is Gaussian, then for  $\ell_1$  -minimization

$$\mathbb{E}\left(\|\widehat{x} - x\|_2^2\right) \le \frac{C'}{A} S\sigma^2 \log N$$

# White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n) = \Phi x + \Phi n$$

Suppose  $\Phi$  has orthogonal rows with norm equal to  $\sqrt{B}$ . If n is white noise with variance  $\sigma^2$ , then  $\Phi n$  is white noise with variance  $B\sigma^2$ .

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \leq C' \frac{B}{A} S \sigma^{2} \log N$$

$$SNR = 10 \log_{10} \left( \frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$
 of subsampling



# White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n) = \Phi x + \Phi n$$

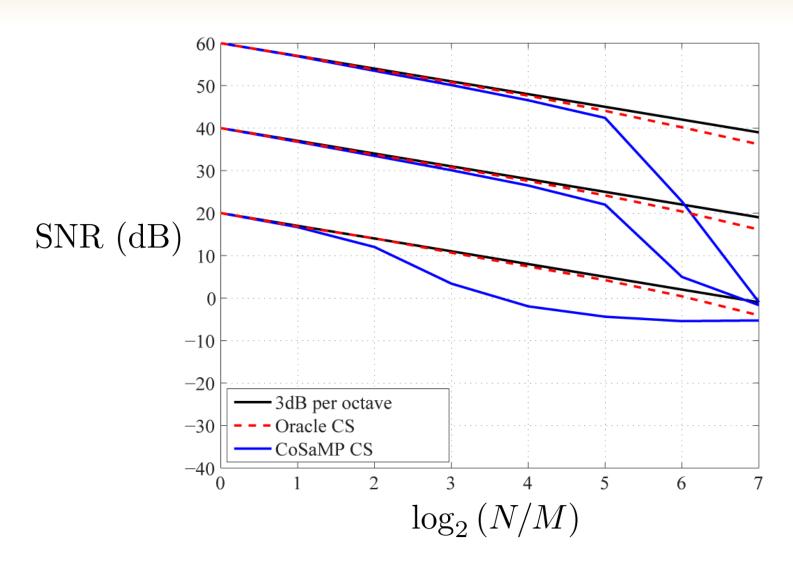
Suppose  $\Phi$  has orthogonal rows with norm equal to  $\sqrt{B}$ . If n is white noise with variance  $\sigma^2$ , then  $\Phi n$  is white noise with variance  $B\sigma^2$ .

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \leq C' \frac{N}{M} S \sigma^{2} \log N$$

$$SNR = 10 \log_{10} \left( \frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$
 of subsampling



# Noise Folding



[D, Laska, Treichler, and Baraniuk - 2011]

### Can We Do Better?

- Better choice of Φ?
- Better recovery algorithm?

If we knew the support of x a priori, then we could achieve

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \approx \frac{S}{M} S \sigma^{2} \ll C' \frac{N}{M} S \sigma^{2} \log N$$

Is there any way to match this performance without knowing the support of  $\boldsymbol{x}$  in advance?

$$R_{\text{mm}}^*(\Phi) = \inf_{\widehat{x}} \sup_{\|x\|_0 < S} \mathbb{E} \left[ \|\widehat{x}(\Phi x + e) - x\|_2^2 \right]$$

### No!

#### Theorem:

If 
$$y=\Phi x+e$$
 with  $e\sim \mathcal{N}(0,\sigma^2I)$ , then 
$$R^*_{\min}(\Phi)\geq C\frac{N}{\|\Phi\|_F^2}S\sigma^2\log(N/S).$$

If 
$$y=\Phi(x+n)$$
 with  $n\sim \mathcal{N}(0,\sigma^2I)$  , then  $R^*$   $(\Phi)>C\frac{N}{-N}S\sigma^2\log(N/S)$  .

$$R_{\text{mm}}^*(\Phi) \ge C \frac{N}{M} S \sigma^2 \log(N/S).$$

$$\Phi = U\Sigma V^* \quad y' = \Sigma^{-1}U^*y = V^*x + V^*n \quad ||V^*||_F^2 = M$$

See also: Raskutti, Wainwright, and Yu (2009) Ye and Zhang (2010)

### **Proof Recipe**

### Ingredients [Makes $\sigma^2 = 1$ servings]

- Lemma 1: Suppose  $\mathcal X$  is a set of S-sparse points such that  $\|x_i-x_j\|_2^2 \geq 8R_{\min}^*(\Phi)$  for all  $x_i,x_j \in \mathcal X$ . Then  $\frac{1}{2}\log|\mathcal X|-1 \leq \frac{1}{2|\mathcal X|^2}\sum_{i,j}\|\Phi x_i-\Phi x_j\|_2^2$ .
- Lemma 2: There exists a set  $\mathcal{X}$  of S-sparse points such that
  - $|\mathcal{X}| = (N/S)^{S/4}$
  - $||x_i x_j||_2 \ge \frac{1}{2}$  for all  $x_i, x_j \in \mathcal{X}$
  - $\left\| \frac{1}{|\mathcal{X}|} \sum_{i} x_i x_i^* \frac{1}{N} I \right\| \le \frac{\beta}{N}$  for some  $\beta > 0$

#### Instructions

Combine ingredients and add a dash of linear algebra.

### **Proof Outline**

$$\mu = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} \quad Q = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} x_{i}^{*}$$

$$\frac{S}{4} \log(N/S) - 2 \leq \frac{1}{|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2 
= \text{Tr} \left( \Phi^* \Phi \left( \frac{1}{|\mathcal{X}|^2} \sum_{i,j} (x_i - x_j)(x_i - x_j)^* \right) \right) 
= \text{Tr} \left( \Phi^* \Phi \left( 2(Q - \mu \mu^*) \right) \right) 
\leq 2 \text{Tr} \left( \Phi^* \Phi Q \right) 
\leq 2 \text{Tr} \left( \Phi^* \Phi \right) \|Q\| 
\leq 2 \|\Phi\|_F^2 \cdot 16 R_{\text{mm}}^*(\Phi) (1 + \beta)$$



$$R_{\text{mm}}^*(\Phi) \ge \frac{S \log(N/S)}{128(1+\beta)\|\Phi\|_F^2}$$

### Recall: Lemma 2

Lemma 2: There exists a set  $\mathcal{X}$  of S-sparse points such that

- $|\mathcal{X}| = (N/S)^{S/4}$
- $||x_i x_j||_2 \ge \frac{1}{2}$  for all  $x_i, x_j \in \mathcal{X}$
- $\left\| \frac{1}{|\mathcal{X}|} \sum_{i} x_i x_i^* \frac{1}{N} I \right\| \le \frac{\beta}{N}$  for some  $\beta > 0$

#### Strategy

Construct  $\mathcal{X}$  by sampling (with replacement) from

$$\mathcal{U} = \left\{ x \in \{0, \sqrt{1/S}, -\sqrt{1/S}\}^N : ||x||_0 \le S \right\}$$

Repeat for  $|\mathcal{X}| = (N/S)^{S/4}$  iterations.

With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]

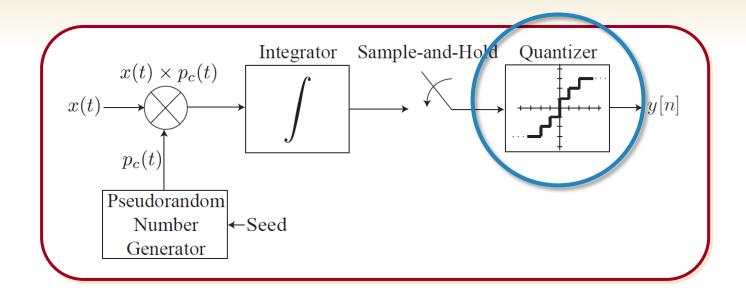
# Compressive Sensing: An Apology

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

**Objection 3:** Impact of quantization

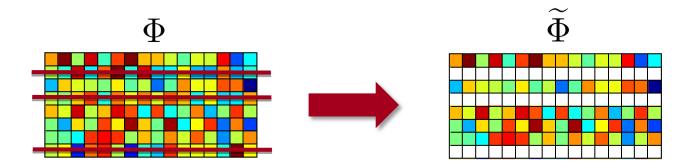
# Signal Recovery with Quantization



- Finite-range quantization leads to *saturation*, i.e., *unbounded errors* on the largest measurements
- Quantization noise changes as we change the sampling rate

# Saturation Strategies

Rejection: Ignore saturated measurements



- Consistency: Retain saturated measurements.
   Use them only as inequality constraints on the recovered signal
- If the rejection approach works, the consistency approach should automatically do better

# Rejection and Democracy

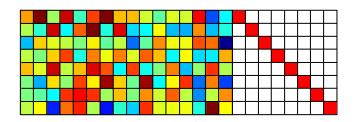
- The RIP is not sufficient for the rejection approach
- Example:  $\Phi = I$ 
  - perfect isometry
  - every measurement must be kept
- We would like to be able to say that any submatrix of  $\Phi$  with sufficiently many rows will still satisfy the RIP



Strong, adversarial form of "democracy"

### Sketch of Proof

• Step 1: Concatenate the identity to  $\Phi$ 



#### Theorem:

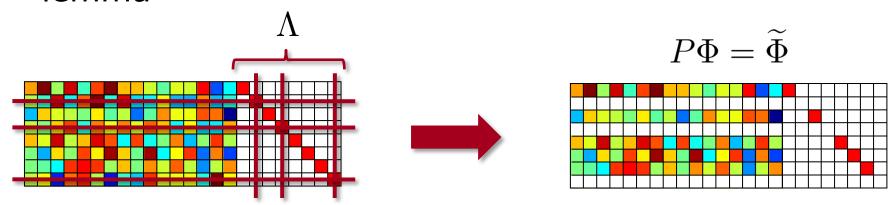
If  $\Phi$  is a sub-Gaussian matrix with

$$M = O\left(S\log\left(\frac{N+M}{S}\right)\right)$$

then  $[\Phi\ I]$  satisfies the RIP of order S with probability at least  $1-3e^{-CM}$ .

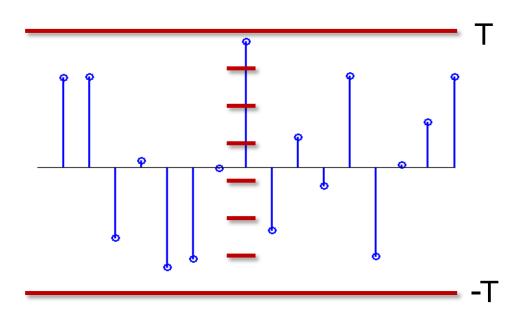
### Sketch of Proof

 Step 2: Combine with the "interference cancellation" lemma



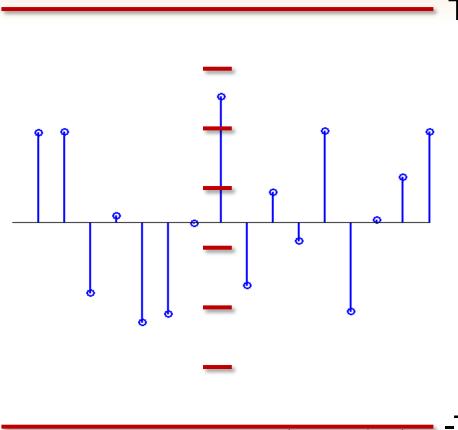
- The fact that  $[\Phi\ I]$  satisfies the RIP implies that if we take D extra measurements, then we can delete O(D) arbitrary rows of  $\Phi$  and retain the RIP
- This is a strong *adversarial* notion of democracy

### Rejection In Practice



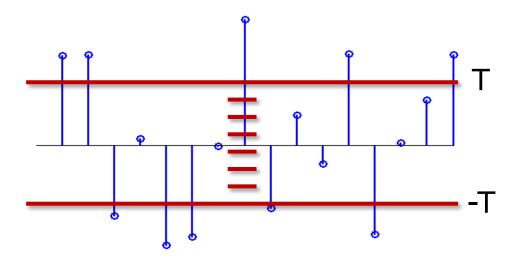
$$SNR = 10 \log_{10} \left( \frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

# Rejection In Practice



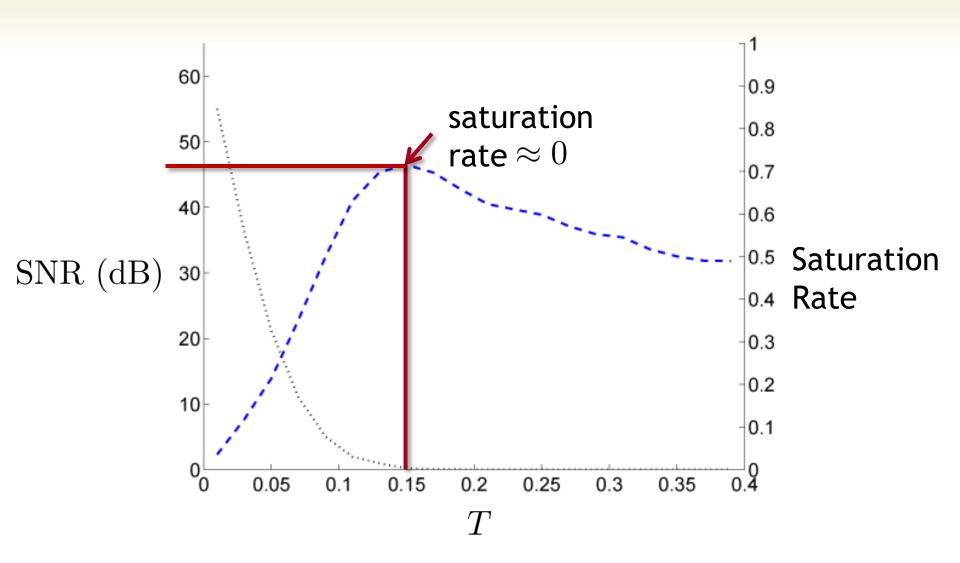
$$SNR = 10 \log_{10} \left( \frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

# Rejection In Practice



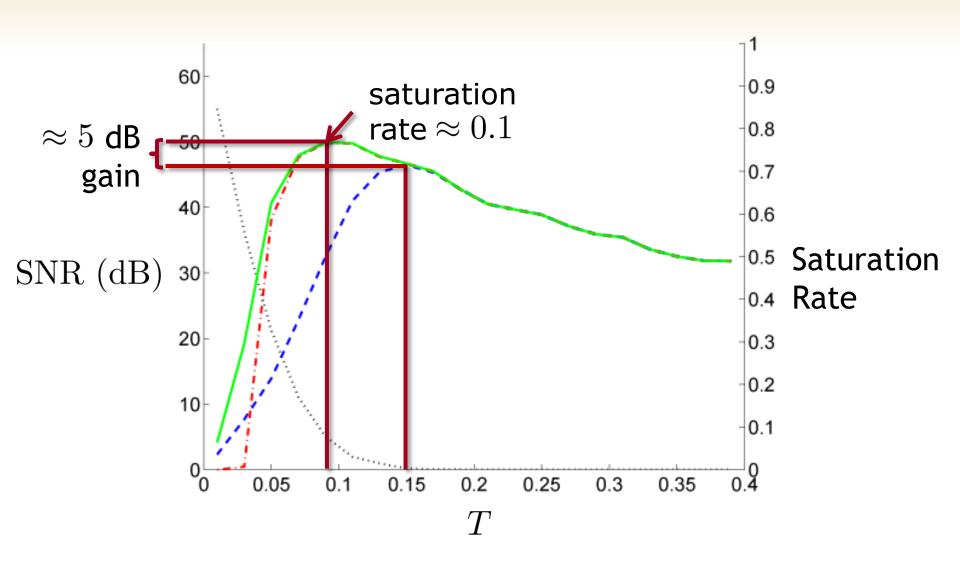
$$SNR = 10 \log_{10} \left( \frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

### Benefits of Saturation



[Laska, Boufounos, D, and Baraniuk - 2011]

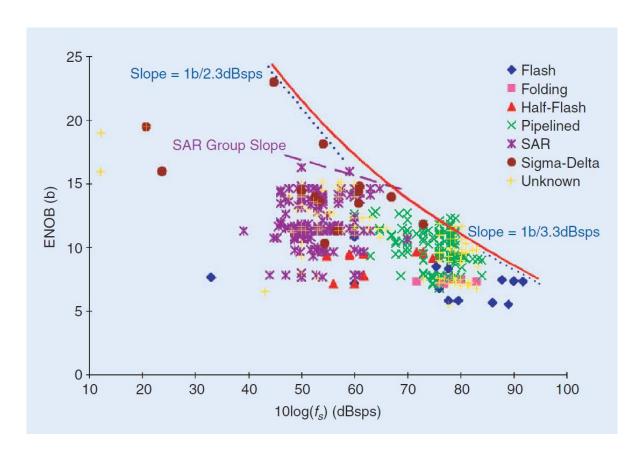
### Benefits of Saturation



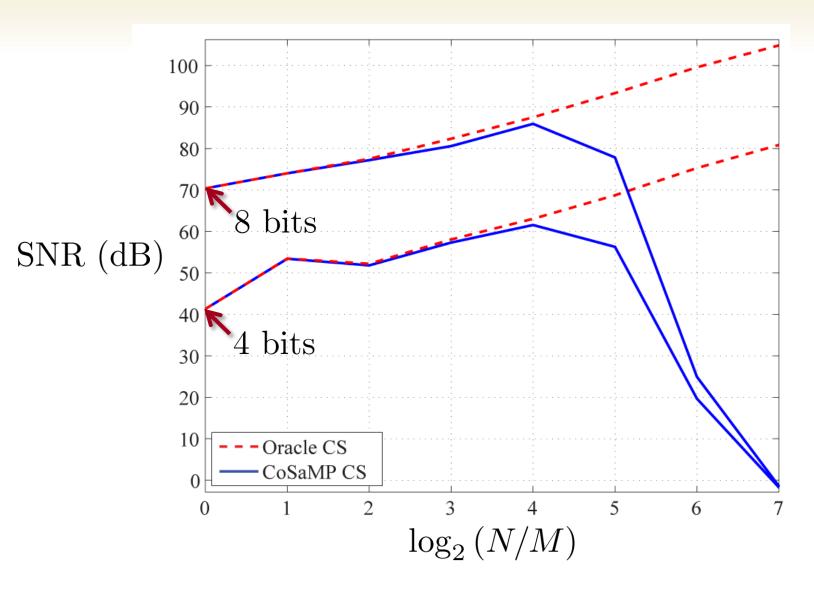
[Laska, Boufounos, D, and Baraniuk - 2011]

# Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bitdepth, allowing for potential gains



# **Empirical SNR Improvement**



[D, Laska, Treichler, and Baraniuk - 2011]

### **Conclusions**

#### Cons

- signal noise can potentially be a problem
- nonadaptivity entails a tremendous SNR loss
- if you have signal noise or can get benefits from averaging, taking fewer measurements might be a really bad idea!

#### **Pros**

- if quantization noise dominates the error, CS can potentially lead to big improvements
- novel strategies for handling saturation errors
- low-bit "CS" might be useful even when  ${\cal M}$  is relatively large