
The Fundamentals of 

Compressive Sensing 

Mark A. Davenport 

 

Georgia Institute of Technology 

School of Electrical and Computer Engineering 



Sensor Explosion 



Data Deluge 



Digital Revolution 

“If we sample a signal at twice its highest    

frequency, then we can recover it exactly.” 

 Whittaker-Nyquist-Kotelnikov-Shannon  



Data with high-frequency content is often not intrinsically 

high-dimensional 

 

 

 

 

 

Signals often obey low-dimensional models 

– sparsity 

– manifolds 

– low-rank matrices 
 

The “intrinsic dimension”     can be much less than  

the “ambient dimension” 

Dimensionality Reduction 



Sample-Then-Compress Paradigm 

• Standard paradigm for digital data acquisition 

– sample data   (ADC, digital camera, …)  

– compress data   (signal-dependent, nonlinear) 

 

 

 

 

 

 

 

 
 

• Sample-and-compress paradigm is wasteful  

– samples cost $$$ and/or time 

 

JPEG 

MPEG 

… 

sample compress transmit/store 

receive decompress 



Exploiting Low-Dimensional Structure 

We would like to operate at the intrinsic dimension at all 

stages of the information-processing pipeline  

How can we exploit low-dimensional structure  

in the design of signal processing algorithms? 

process 

detect 

classify 

estimate 

filter 

recover 

acquire 



Compressive Sensing 

Replace samples with general linear measurements  

 

 

 

 

 

 

 

 

 
 

measurements 

-sparse 

sampled 

signal 

[Donoho; Candès, Romberg, Tao - 2004] 



Sparsity 

    nonzero 
entries 

pixels 
large 

wavelet 

coefficients 



Sparsity 

    nonzero 
entries 

samples 
large 

Fourier 

coefficients 



Sparsity 

    nonzero 
entries 



Core Theoretical Challenges 

• How should we design the matrix     so that      is as small 

as possible? 

 

 

 

 

 

 

 

 

• How can we recover    from the measurements    ? 



Outline 

• Sensing matrices and real-world compressive sensors 

– (structured) randomness 

– tomography, cameras, ADCs, … 

 

• Sparse signal recovery 

– convex optimization 

– greedy algorithms 

 

• Beyond recovery 

– compressive signal processing 

 

• Beyond sparsity 

– parametric models, manifolds, low-rank matrices, … 

 



Sensing Matrix 

Design 



Analog Sensing is Matrix Multiplication 

If         is bandlimited, 

 

Nyquist-rate  

samples  

of 

vector 



Restricted Isometry Property (RIP) 



RIP and Stability 

If we want to guarantee that 

 

 

then we must have  



Sub-Gaussian Distributions 

• As a first example of a matrix     which satisfies the RIP, we 

will consider random constructions 

 

• Sub-Gaussian random variable: 

– Gaussian 

– Bernoulli/Rademacher (     )  

– any bounded distribution 

 

• For any   , if the entries of     are sub-Gaussian, then there 

exists a    such that with high probability 

 

 



Johnson-Lindenstrauss Lemma 

• Stable projection of a discrete set of     points 

 

 

 

 

 

 

• Pick     at random using a sub-Gaussian distribution 
 

• For any fixed   ,            concentrates around 

with (exponentially) high probability    
 

• We preserve the length of all            difference vectors 

simultaneously if                        

 



JL Lemma Meets RIP 

 [Baraniuk, Davenport, DeVore, Wakin –2008] 



RIP Matrix: Option 1 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 [Baraniuk, Davenport, DeVore, Wakin –2008] 



• Random Fourier submatrix 

 

RIP Matrix: Option 2 

 [Candès and Tao - 2006] 



RIP Matrix: Option 3 

“Fast JL Transform” 

• By first multiplying by random signs, a random Fourier 

submatrix can be used for efficient JL embeddings 

 

• If you multiply the columns of any RIP matrix by random 

signs, you get a JL embedding! 

 [Ailon and Chazelle – 2007; Krahmer and Ward - 2010 ] 



Hallmarks of Random Measurements 

Stable 

With high probability,    will preserve information, be robust to 

noise 
 

Universal (Options 1 and 3) 

      will work with any fixed orthonormal basis (w.h.p.) 

 

 

 

 

 

Democratic 

Each measurement has “equal weight” 



Compressive Sensors 

in Practice 



Tomography in the Abstract 



Fourier-Domain Interpretation 

• Each projection gives us a “slice” of the 2D Fourier 

transform of the original image 
 

• Similar ideas in MRI 
 

• Traditional solution: Collect lots (and lots) of slices 



Why CS? 



CS for MRI Reconstruction 

Min TV, 34.23dB [CR] 

Backproj., 29.00dB 256x256 MRA 

Fourier sampling 

80 lines (M~0.28N) 



Pediatric MRI 

Traditional MRI CS MRI 

 

4-8 x faster! 

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010] 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



TI Digital Micromirror Device 



Compressive ADCs 

Build high-rate ADC for signals with sparse spectra 

 

 

500 MHz 



Compressive ADCs 

Build high-rate ADC for signals with sparse spectra 

 

 

[Le – 2005; Walden – 2008] 



Compressive ADC Approaches 

• Random sampling 

– long history of related ideas/techniques 

– random sampling for Fourier-sparse data equivalent to 

obtaining random Fourier coefficients for sparse data 

 

• Random demodulation 

– CDMA-like spreading followed by low-rate uniform sampling 

– modulated wideband converter 

– compressive multiplexor, polyphase random demodulator 

 

• Both approaches are specifically tailored for Fourier-sparse 

signals 



Random Demodulator 

 

 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Random Demodulator 

 

 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Empirical Results 

Signal Bandwidth Hz (N) Number of Nonzero Components (S) 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Example: Frequency Hopper 

 20x sub-Nyquist sampling  Nyquist rate sampling  



Compressive Multiplexor 

[Slavinsky, Laska, Davenport, Baraniuk – 2011] 



Compressive Multiplexor in Hardware 

• Boils down to: 

–    LFSR 

–    switches 

–      resistors 

–    op amps 

–    low-rate ADC 

[Slavinsky, Laska, Davenport, Baraniuk – 2011] 

1.1mm x 1.1mm ASIC on its way! 



Compressive Sensors Wrap-up 

• CS is built on a theory of random measurements 

– Gaussian, Bernoulli, random Fourier, fast JLT 

– stable, universal, democratic 

 

• Randomness can often be built into real-world sensors 

– tomography 

– cameras 

– compressive ADCs 

– microscopy 

– astronomy 

– sensor networks 

– DNA microarrays and biosensing 

– radar 

–  … 



Sparse Signal Recovery 



Sparse Signal Recovery 

support 
values 

• Optimization /    -minimization 
 

• Greedy algorithms 

– matching pursuit 

– orthogonal matching pursuit (OMP) 

– Stagewise OMP (StOMP), regularized OMP (ROMP) 

– CoSaMP, Subspace Pursuit, IHT, … 



Sparse Recovery: Noiseless Case 

•    -minimization: 

 

 

•    -minimization: 

 

 

 

• If     satisfies the RIP, then      and     are equivalent!  

 

  given              

find   

nonconvex 
NP-Hard 

convex 
linear program 

[Donoho; Candès, Romberg, Tao - 2004] 



Why     -Minimization Works 



Sparse Recovery: Noisy Case 

Suppose we observe                  , where    

 

 

 

 

 

 

 

 

 

Similar approaches can handle Gaussian noise added to either 

the signal or the measurements  



Sparse Recovery: Non-sparse Signals 

In practice,    may not be exactly    -sparse 



Greedy Algorithms: Key Idea 

If we can determine                   , then the problem becomes 

over-determined.  

 

 

 

 

 

 

In the absence of noise,   



Matching Pursuit 

Select one index at a time using a simple proxy for  

 

 

 

 

 

 

If     satisfies the RIP of order              , then 

 

 

Set            and 



Matching Pursuit 

Obtain initial estimate of 

 

 

 
 

Update proxy and iterate 



Iterative Hard Thresholding (IHT) 

[Blumensath and Davies – 2008] 

proxy vector 

step size 

hard thresholding 

RIP guarantees convergence and accurate/stable recovery 



Orthogonal Matching Pursuit 

Replace                                     with 

 

 

where     is the set of indices selected up to iteration  

Projection onto 



Interference Cancellation 

If    satisfies the RIP of order   , then         

 

 

 

for all   with                      and  

[Davenport, Boufounos, Wakin, Baraniuk – 2010] 



Orthogonal Matching Pursuit 

Suppose    is    -sparse and 
If    satisfies the RIP of order          with 
constant                 , then the     identified at 
each iteration will be a nonzero entry of   .   

Exact recovery after    iterations 
 

[Davenport and Wakin – 2010] 



Extensions of OMP 

• StOMP, ROMP 

– select many indices in each iteration 

– picking indices for which      is “comparable” leads to 

increased stability and robustness 

 

• CoSaMP, Subspace Pursuit, … 

– allow indices to be discarded 

– strongest guarantees, comparable to    -minimization 

[Needell and Tropp – 2010] 



Beyond Recovery 



Compressive Signal Processing 

Random measurements are information scalable 

 

 

 

 

 

 

 

 

 

When and how can we directly solve signal processing 

problems directly from compressive measurements? 

Compressive 

measurement system 

Target Tracking 

Target Detection 

Signal Recovery 

Signal Identification 



Compressive Radio Receivers 

Example Scenario 

• 300 MHz bandwidth 

• 5 FM signals (12 kHz) 

• TV station interference 

• Acquire compressive 

measurements at 30 MHz  

(20 x undersampled) 
 

 

We must simultaneously solve several problems 

 

 

 

 

 

cancel 

known 

interferers 

detect 

signal 

energy 

filter 

signals of 

interest 

demod 
baseband 

signals 

or bitstreams 



Energy Detection 

We need to identify where in frequency the important signals 

are located 
 

Compressive Estimation: correlate with projected tones 

 [Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – 2010] 



Filtering  

If we have multiple signals, must be able to filter  

to isolate and cancel interference 

 

 

      : Discrete prolate spheroidal sequences 

original after interference 

cancellation 
after isolation 

filtering 

 [Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – 2010] 



We can use a phase-locked-loop (PLL) to track deviations in 

frequency by directly operating on compressive 

measurements 

 

 

 

 

 

 

 

We can directly demodulate signals from compressive 

measurements without recovery  

 

Unsynchronized Demodulation 

 [Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – 2010] 



We can use a phase-locked-loop (PLL) to track deviations in 

frequency by directly operating on compressive 

measurements 

 

 

 

 

 

 

 

We can directly demodulate signals from compressive 

measurements without recovery  

 

Unsynchronized Demodulation 

 [Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – 2010] 



Compressive Domain Demodulation 

CS-PLL with  

20x undersampling 

 [Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – 2010] 



Beyond Sparsity 



Beyond Sparsity 

• Not all signal models fit neatly into the “sparse” setting 

 

• The concept of “dimension” has many incarnations 

– “degrees of freedom” 

– constraints 

– parameterizations 

– signal families 

 

• How can we exploit these low-dimensional models? 

 

• I will focus primarily on just a few of these 

– structured sparsity, finite-rate-of-innovation, manifolds,  

low-rank matrices 



Structured Sparsity 

• Sparse signal model captures  

simplistic primary structure 
 

• Modern compression/processing algorithms capture  

richer secondary coefficient structure 

 

wavelets: 

natural images 

Gabor atoms: 

chirps/tones 

pixels: 

background subtracted 

images 



Sparse Signals 

Traditional sparse models allow all possible   

   -dimensional subspaces 

 



Wavelets and Tree-Sparse Signals 

Model:     nonzero coefficients lie on a connected tree 

 [Baraniuk, Cevher, Duarte, Hegde – 2010] 



Other Useful Models 

• Clustered coefficients 

– tree sparse 

– block sparse 

– Ising models 

 

 

 

• Dispersed coefficients 

– spike trains 

– pulse trains 

 

 [Baraniuk, Cevher, Duarte, Hegde – 2010] 



Finite Rate of Innovation 

Continuous-time notion of sparsity: “rate of innovation” 
 

Examples: 

 

 

 

 

 

 

Rate of innovation:  

Expected number of innovations per second 

 [Vetterli, Marziliano, Blu – 2002; Dragotti, Vetterli, Blu - 2007] 

Innovations 



Sampling Signals with FROI 

We would like to obtain samples of the form 

 

 

where we sample at the rate of innovation. 

 

Requires careful construction of sampling kernel        . 

 

Drawbacks: 

– need to repeat process for each signal model 

– stability 

 [Vetterli, Marziliano, Blu – 2002; Dragotti, Vetterli, Blu - 2007] 



Manifolds 

•    -dimensional parameter           

captures the degrees of freedom 

of signal 
 

• Signal class forms an     

   -dimensional manifold 

– rotations, translations 

– robot configuration spaces 

– signal with unknown translation 

– sinusoid of unknown frequency 

– faces 

– handwritten digits 

– speech 

– … 



Random Projections 

• For sparse signals, random projections preserve geometry 

 

 

 

 

 

 

 

 

 

• What about manifolds? 



Whitney’s Embedding Theorem (1936) 

   -dimensional 

smooth 

compact 

              random 

projections suffice 

to embed the 

manifold…    

 

But very unstable! 



Stable Manifold Embedding 

Theorem 

Let                 be a compact    -dimensional  

manifold with 

– condition number        (curvature, self-avoiding) 

– volume 
 

Let     be a random             projection with 

 

 

Then with high probability, and any  

 [Baraniuk and Wakin – 2009] 



Stable Manifold Embedding 

Sketch of proof 

– construct a sampling of points 

 on manifold at fine resolution 

 from local tangent spaces 

– apply JL lemma to these points 

 

 

– extend to entire manifold 

 

Implications 
 

 Nonadaptive (even random) linear projections can 
efficiently capture & preserve structure of manifold  
 

See also: Indyk and Naor, Agarwal et al., Dasgupta and Freund 

 [Baraniuk and Wakin – 2009] 



Compressive Sensing with Manifolds 

? 

• Same sensing protocols/devices 

• Different reconstruction models 

• Measurement rate depends on manifold dimension 

• Stable embedding guarantees robust recovery 



Low-Rank Matrices 

Singular value decomposition: 

degrees of freedom 



Matrix Completion 

• Collaborative filtering (“Netflix problem”) 

• How many samples will we need? 

 
 

• Coupon collector problem 



Low-Rank Matrix Recovery 

Given: 

• an            matrix     of rank  

• linear measurements 

 

How can we recover     ? 

 

 

 

 

 

Can we replace this with something computationally feasible? 



Nuclear Norm Minimization 

Convex relaxation! 

 

Replace               with                         

 

The “nuclear norm” is just the    -norm of the vector of 

singular values 

 

 

 

 

 [Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, …] 



Nuclear Norm Minimization 

Convex relaxation! 

 

Replace               with                         

 

The “nuclear norm” is just the    -norm of the vector of 

singular values 

 

 

 

 

 [Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, …] 



Conclusions 



Conclusions 

• The theory of compressive sensing allows for new sensor 

designs, but requires new techniques for signal recovery 
  

• We can still use compressive sensing even when signal 

recovery is not our goal 
 

• “Conciseness” has many incarnations 

– structured sparsity 

– finite rate of innovation, manifold, parametric models 

– low-rank matrices 

 

• The theory/techniques from compressive sensing can be 

tremendously useful in a variety of other contexts 


