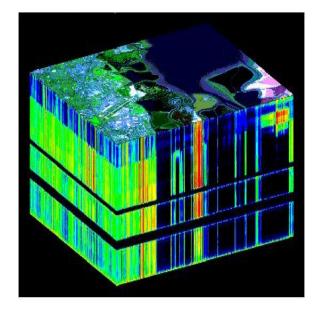
Sparse Spectral Unmixing

Mark Davenport Marco Duarte Richard Baraniuk

Rebecca Willett

Hyperspectral Imaging

 Images simultaneously acquired in many narrow, adjacent frequency bands

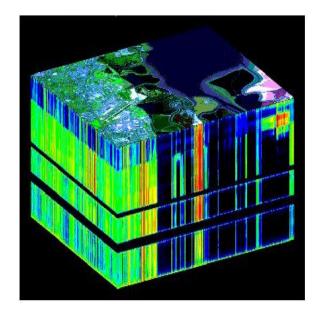


- A hyperspectral image is not just an image
 - provides detailed information about chemical compositions of materials present
 - great potential for classification/anomaly detection applications

Spectral Unmixing

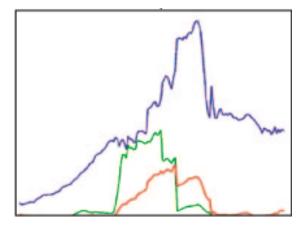
- Challenges in hyperspectral imaging:
 - often limited by large pixel size
 - spectrum observed at a single pixel may actually be a mixture of multiple spectra

- We would like to identify:
 - the separate materials present at a given pixel
 - the quantities of each material



Supervised Spectral Unmixing

- Begin by assuming we have a dictionary of spectral signatures (*endmembers*)
 - water
 - soil
 - metal
 - man-made materials



- Traditional approaches
 - least squares without noise: ULS, NNLS, POCS
 - least squares with noise: MVUE, Gaussian MVUE
 - max entropy, fuzzy membership, log-odds...

Sparsity

 Many natural images can be compressed in some representation/basis (Fourier, wavelets)

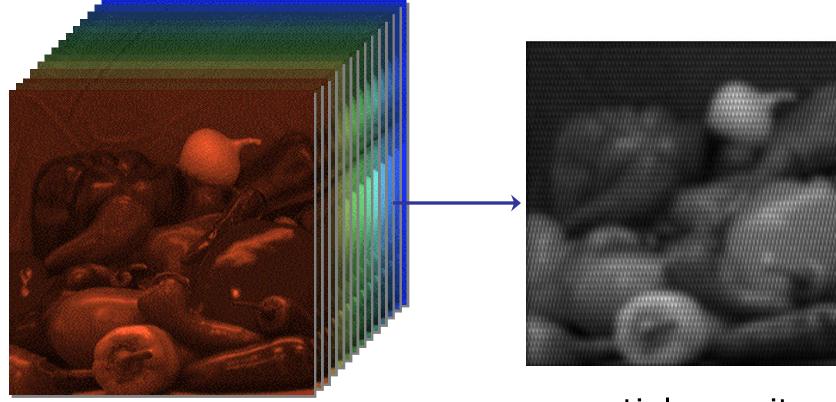
N

 $K \ll N$ large wavelet coefficients

Sparse Spectral Unmixing

- We can exploit sparsity to solve the unmixing problem
 - the amount of a particular substance present will tend to vary smoothly from pixel to pixel (spatial-regularity)
 - each pixel will only have contributions from a small number of spectral signatures (spectral mixture sparsity)

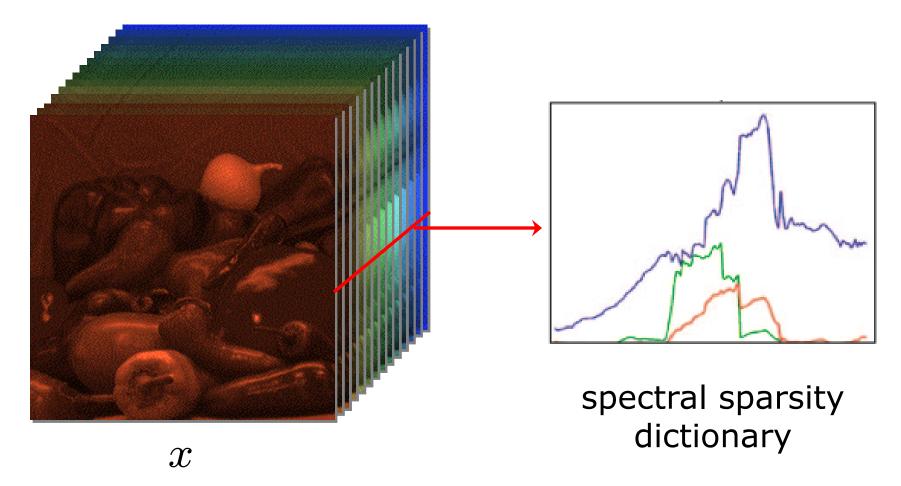
Spatial Sparsity



spatial sparsity (wavelets) Ψ_S

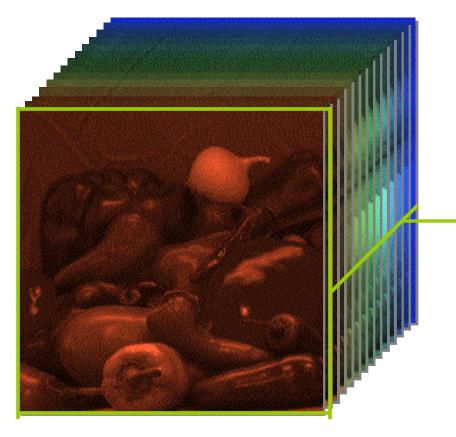
 ${\mathcal X}$

Spectral Sparsity



 Ψ_F

Tensor Product Dictionary



datacube sparsity (tensor product of spatial and spectral dictionaries)

 $\Psi = \Psi_S \otimes \Psi_F$

 ${\mathcal X}$

Sparse Spectral Unmixing

Given
$$x = \Psi \alpha$$

find α assume α
is sparse

- Recovery algorithms:
 - linear programming/basis pursuit

$$\widehat{\alpha} = \arg\min_{x=\Psi\alpha} \|\alpha\|_1$$

- greedy algorithms (OMP, ROMP)
- many variations... dsp.rice.edu/cs

Theoretical Guarantees

- When can we guarantee that one of these algorithms can unmix the data?
- The spectral dictionary must satisfy

$$\|\Psi_F \alpha\|_2 \approx \|\alpha\|_2$$

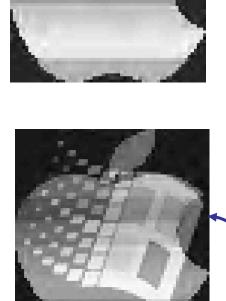
for all sparse α

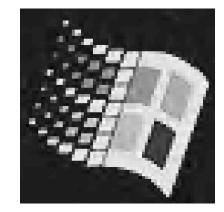
• Note: we cannot provide good guarantees for arbitrary spectral dictionaries

Synthetic Experiment

- Each logo is assigned 5 random elements (and weights) from spectral dictionary
- Weights are proportional to image intensity

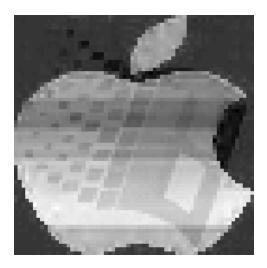
• Perform unmixing using GPSR [Figueiredo, Nowak, Wright]

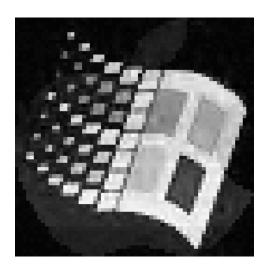




Results

- Using GPSR followed by a simple thresholding of the wavelet coefficients
 - correctly identify all significant spectral signatures
 - no false alarms
 - relatively reliable estimates of the original mixing coefficients





Shortcomings

- Acquiring and storing the entire dataset can be expensive
 - current systems often overcome the storage issue through *dimensionality reduction* (PCA)
 - can something similar work for sparse spectral unmixing?
- Our approach requires that we know the dictionary *supervised* spectral unmixing
 - can sparse spectral unmixing be generalized to the unsupervised case?

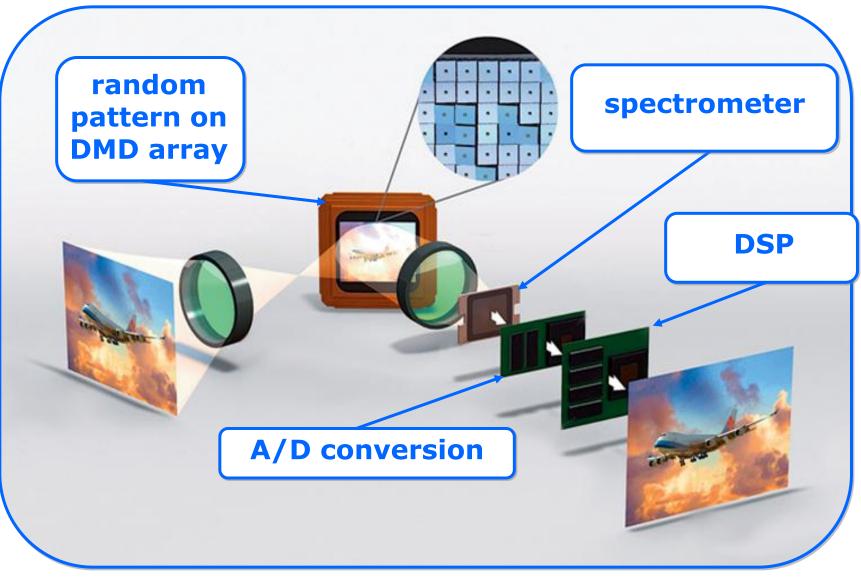
Dimensionality Reduction

- For *sparse* data, PCA is doomed
- Compressive sensing: *random projections* preserve the information in sparse signals

$$\| \Phi \Psi \alpha \|_2 \approx \| \alpha \|_2$$

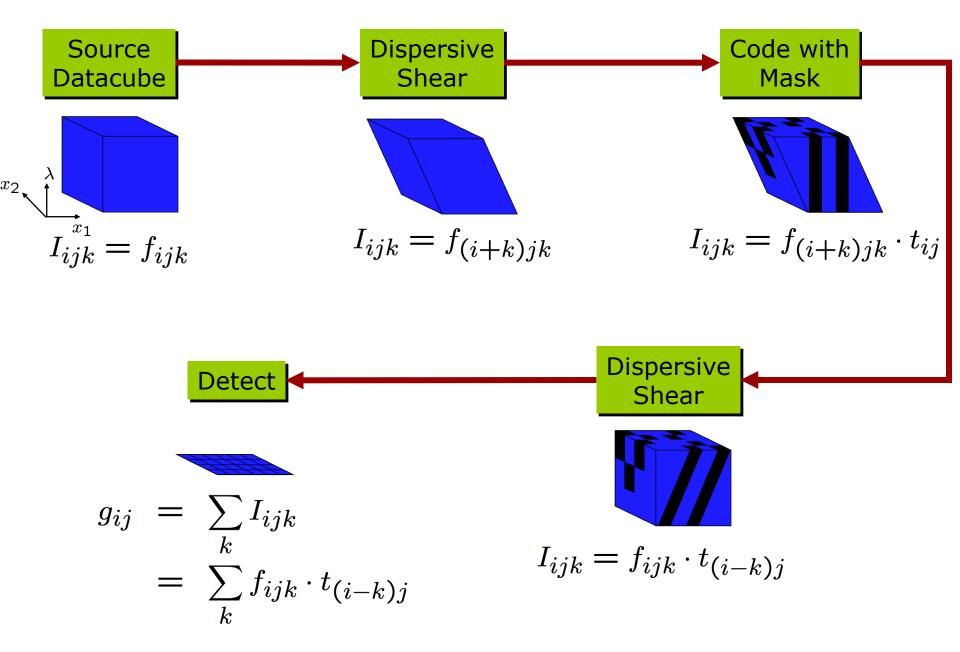
• We can exploit this to build new hyperspectral imaging hardware

Rice Single-Pixel Hyperspectral Camera



© MIT Technology Review 2007

Duke Hyperspectral Imager

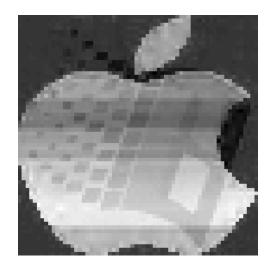


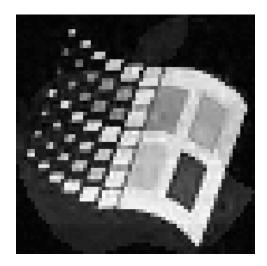
Compressive Spectral Unmixing

Given
$$x = \Phi \Psi \alpha$$

find α

Using 10x fewer measurements





Unsupervised Spectral Unmixing

- We may not have enough prior information about the scene to build a dictionary of spectral signatures
- Traditional approach
 - ICA
- Learn the spectral signatures from the data by again exploiting sparsity
 - K-SVD [Aharon, Elad, Bruckstein]
 - Sparse ICA [Lennon, Mercier, Mouchot, Hubert-Moy]

Conclusions

- Sparse recovery provides a powerful framework for spectral unmixing
- Sparse spectral unmixing yields a recovery algorithm for compressive hyperspectral imaging systems
- Unsupervised sparse spectral unmixing should be possible, and are a necessary next step