

The Smashed Filter for Compressive Classification and Target Recognition

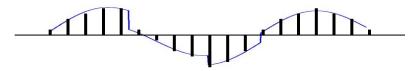
Mark A. Davenport

Joint work with Marco Duarte, Michael Wakin, Jason Laska, Dharmpal Takhar, Kevin Kelly and Rich Baraniuk

dsp.rice.edu/cs

Data Explosion

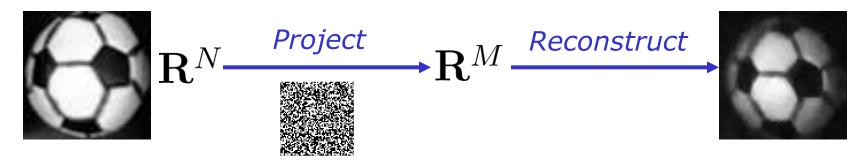
DSP revolution:
 sample first and ask questions later



- Increasing *pressure* on classification algorithms
 - ever faster training and classification rates
 - ever larger, higher-dimensional data
 - ever lower energy consumption
 - radically new sensing modalities
- How can we acquire and process high-dimensional data quickly and efficiently?

Compressive Classification

- Random projections preserve information
 - Johnson-Lindenstrauss Lemma (point clouds 1984)
 - Compressed Sensing (sparse signals CRT, Donoho 2004)



- If we can reconstruct a signal from compressive measurements, we should be able to perform
 - detection
 - classification
 - estimation

- ...

Multiclass Likelihood Ratio Test

• Observe one of *P* known signals in noise

$$H_1 : x = s_1 + n$$

 $H_2 : x = s_2 + n$
 \vdots
 $H_P : x = s_P + n$

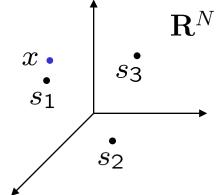
• Classify according to:

$$\underset{j=1,\ldots,P}{\operatorname{arg\,max}} p(x|H_j)$$

• AWGN: *nearest-neighbor* classification

arg min
$$||x - s_j||_2$$

 $j=1,...,P$



Johnson-Lindenstrauss Lemma

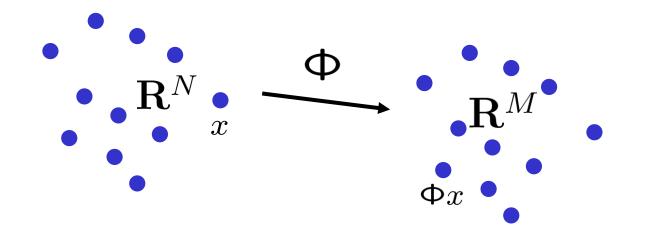
Let $\epsilon \in (0,1)$ be given. For every set Q of |Q| points in ${\rm I\!R}^N,$ if

$$M = O\left(\frac{\log(|Q|/\delta)}{\epsilon^2}\right),\,$$

a randomly drawn $M \times N$ matrix Φ will satsify

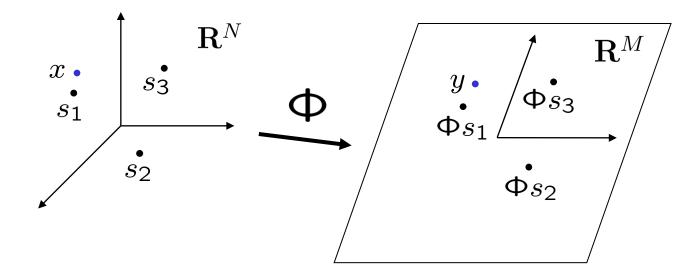
$$(1-\epsilon)\|u-v\|_2 \le \|\Phi u - \Phi v\|_2 \le (1+\epsilon)\|u-v\|_2$$

for all $u, v \in Q$ with probability at least $1-\delta$.



Compressive LRT

• Now suppose we observe H_j : $y = \Phi(s_j + n)$



$$t_{1} = \|y - \Phi s_{1}\|_{2}$$

$$t_{2} = \|y - \Phi s_{2}\|_{2}$$

$$t_{3} = \|y - \Phi s_{3}\|_{2}$$

by the JL Lemma
these distances
are preserved

[Waagen 05, Davenport 06, Haupt 06]

Matched Filters

 We may know what signals we are looking for, but we may not know where to look

$$H_j : x = s_j(t - \theta_j) + n$$

• Elegant solution: matched filter Compute

$$\langle x, s_j(t - heta_j)
angle$$
 for all $heta_j$
 $(x, s_j(t - heta_j))$
 $(x, s_j(-t))$

Challenge: Modify the compressive LRT to accommodate *unknown parameters*

Generalized Likelihood Ratio Test

• GLRT:

$$\underset{j=1,\ldots,P}{\operatorname{arg\,max}} p(x|\widehat{\theta}_j,H_j)$$

where

$$\widehat{\theta}_j = \underset{\theta \in \Theta_j}{\operatorname{arg\,max}} p(x|\theta, H_j)$$

- Matched filter is a special case of the GLRT
- GLRT approach can be extended to any case where each class can be *parameterized*
- If mapping from parameters to signal is wellbehaved, each class forms a *manifold*

Manifold Classification

Now suppose our data is drawn from one of P possible manifolds:

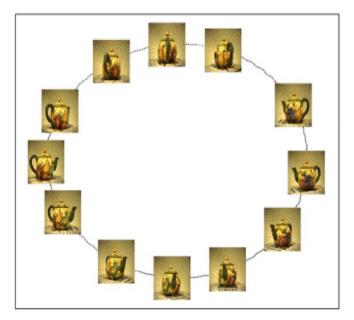
$$H_j$$
: $x = m_j + n, \quad m_j \in M_j$
 $m_j = f_j(\theta_j)$

$$M_1$$

 M_3 M_2
 x

$$\underset{j=1,...,P}{\text{arg max}} p(x|\widehat{\theta}_j, H_j)$$

$$\widehat{\theta}_{j} = \underset{\theta \in \Theta_{j}}{\operatorname{arg\,min}} \|x - f_{j}(\theta_{j})\|_{2}$$
$$\underset{j=1,\dots,P}{\operatorname{arg\,min}} \|x - f_{j}(\widehat{\theta}_{j})\|_{2}$$



Stable Manifold Embedding

Theorem:

Let $F \subset {old R}^{
m N}$ be a compact <u>K-dimensional</u> manifold with

- condition number $1/\tau$ (curvature, self-avoiding)
- volume V

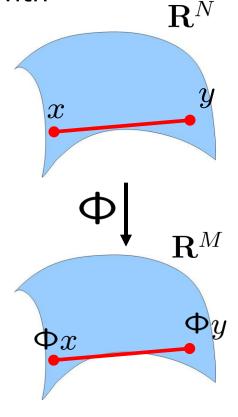
Let Φ be a random $M\!xN$ orthoprojector with

$$\underline{M} = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

Then with probability at least $1-\rho$, the following statement holds:

For every pair x, $y \in F$,

$$(1-\epsilon) \|x - y\|_{2} \le \|\Phi x - \Phi y\|_{2} \le (1+\epsilon) \|x - y\|_{2}.$$
[Baraniuk-Wakin 06]



Multiple Manifold Embedding

 \mathbf{R}^N

 \mathbf{R}^{M}

 Φy

 \mathcal{X}

 Φx

Corollary:

Let $M_1, ..., M_P \subset \mathbb{R}^N$ be compact K-dimensional manifolds with

- condition number $1/\tau$ (curvature, self-avoiding)
- volume V
- min dist $(M_j, M_k) > \tau$

Let Φ be a random $M\!xN$ orthoprojector with

$$M = O\left(\frac{K\log(NPV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

Then with probability at least $1-\rho$, the following statement holds:

For every pair $x, y \in \bigcup M_j$,

 $(1-\epsilon) ||x-y||_2 \le ||\Phi x - \Phi y||_2 \le (1+\epsilon) ||x-y||_2.$

The Smashed Filter

- Compressive manifold classification with GLRT
 - nearest-manifold classifier
 - manifolds classified are now $\Phi M_j = \{ \Phi f_j(\theta_j) : \theta_j \in \Theta_j \}$

$$H_{j} : y = \Phi(m_{j} + n), \quad m_{j} \in M_{j}$$

$$m_{j} = f_{j}(\theta_{j})$$

$$\underset{j=1,...,P}{\operatorname{arg\,min}} \|y - \Phi f_{j}(\hat{\theta}_{j})\|_{2}$$

$$\widehat{\theta}_{j} = \underset{\theta \in \Theta_{j}}{\operatorname{arg\,min}} \|y - \Phi f_{j}(\theta_{j})\|_{2}$$

$$\oint M_{1}$$

$$\oint M_{3}$$

$$y = \Phi x$$

Rice Single-Pixel Camera

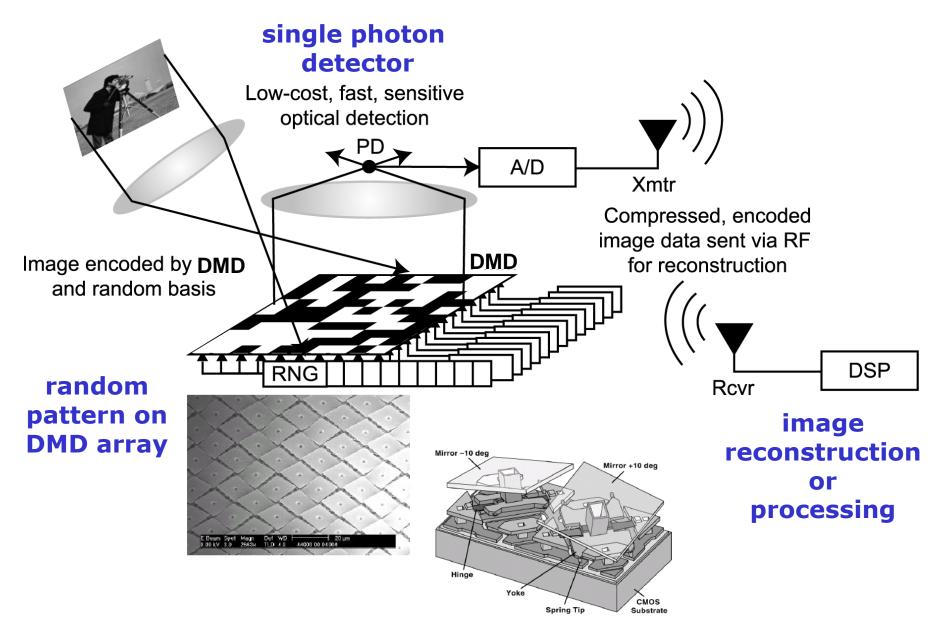


Image Acquisition

8x sub-Nyquist

Single-Pixel Camera in the News

• Favorite Slashdot comments:

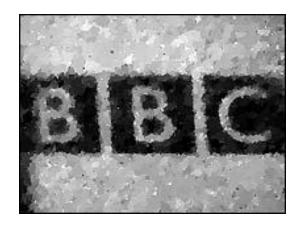
oops, crash, seven million years bad luck !?!

Bet it'd suck to have a bad pixel with that camera, huh? :-)

This is me skydiving

This is me swimming with dolphins

This is me at the grand canyon

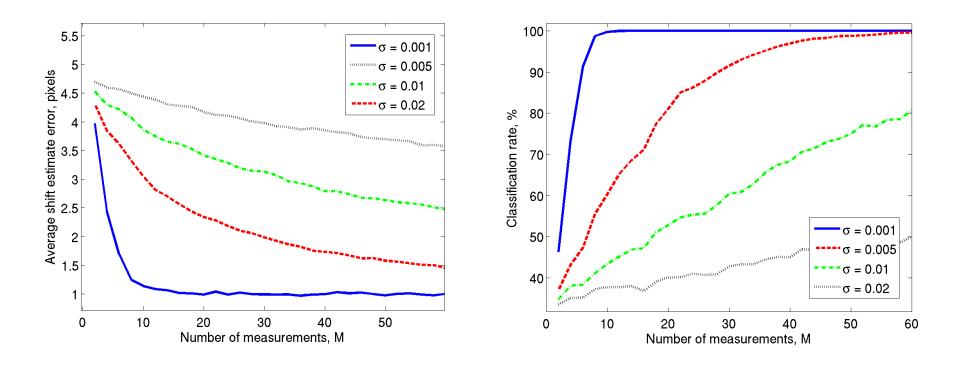


Smashed Filter - Experiments

- 3 image classes
 - T-72 tank
 - schoolbus
 - SUV
- Imaged using single-pixel camera with
 - unknown shift
 - unknown rotation

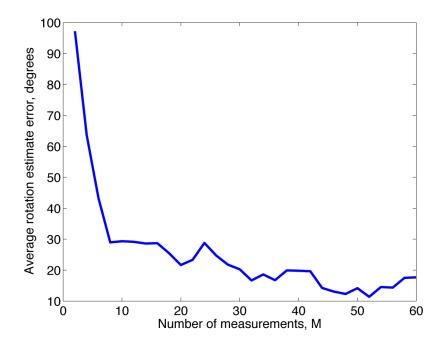
Smashed Filter – Unknown Position

- Image shifted at random, noise added to measurements
 - identify most likely position for each image class
 - identify most likely class using nearest-neighbor test



Smashed Filter – Unknown Rotation

- Training set constructed for each class with compressive measurements
 - rotations at 10°, 20°, ..., 360°
 - identify most likely rotation for each image class
 - identify most likely class using nearest-neighbor test
- *Perfect* classification with as few as 6 measurements
- Good estimates of the viewing angle with under 10 measurements



Conclusions

- Smashed filter
 - efficiently exploits compressive measurements
 - broadly applicable
 - exploits known and unknown manifold structure
 - effective for image classification when combined with singlepixel camera
- Current work:
 - efficient parameter estimation through Newton's method
 - noise analysis
 - compressive k-NN, SVMs, etc.

