RICE

Compressive Domain Interference Cancellation

Mark Davenport, Petros Boufounos, Richard Baraniuk

Compressive Sensing

Subspace Cancellation

Directly acquire a reduced set of low-dimensional compressive measurements

Example: x_I has known support set J of size K_I Seek *P* such that $\mathcal{R}(\Phi_{J}) \subseteq \mathcal{N}(P)$

The *restricted isometry property* (RIP) ensures that Φ captures the information in the signal

$$a\|\alpha\|_2^2 \le \|\Phi\Psi\alpha\|_2^2 \le b\|\alpha\|_2^2 \quad \forall \alpha \quad \|\alpha\|_0 \le K$$

Random Φ satisfy the RIP provided that $M = O(K \log(N/K))$, and provide *information* scalability

$$P = I - \Phi_J \Phi_J^{\dagger}$$
Projection onto $\mathcal{P}(\Phi)$

Observe that
$$Py = P\Phi x_S + P\Phi x_I$$

= $P\Phi x_S$

Theorem: If Φ satisfies the RIP of order $2K_S + K_I$, then $P\Phi$ satisfies $(a - (b - a)^2/4a) ||x||_2^2 \le ||P\Phi x||_2^2 \le b||x||_2^2$ for all x such that $||x||_0 \leq 2K_S$ and $supp(x) \cap J = \emptyset$.

Proof exploits two facts:

$$\|\Phi x\|_2^2 = \|P\Phi x\|_2^2 + \|(I-P)\Phi x\|_2^2$$

$$\frac{\|(I-P)\Phi x\|_2}{\|\Phi x\|_2} = \frac{\langle (I-P)\Phi x, \Phi x \rangle}{\|(I-P)\Phi x\|_2 \|\Phi x\|_2} \le \frac{b-a}{2a}$$

Interference Cancellation

Experiments

Measurements are often contaminated with interference

$$y = \Phi x_S + \Phi x_I$$

Seek to remove contribution of x_I to y without necessarily reconstructing $x = x_S + x_I$

 x_I might represent actual interference, or signals we wish to ignore for some intermediate processing

General Technique

Assume $x_S \in \mathcal{X}_S$ and $x_I \in \mathcal{X}_I$, where $\langle x_I, x_S \rangle = 0$ for all $x_S \in \mathcal{X}_S$, $x_I \in \mathcal{X}_I$

Compare four approaches to cancelling interference with known support

- 1. Cancel-then-recover
- 2. Modified recovery
- 3. Recover-then-cancel
- 4. Oracle-based recover-then-cancel

Compressive domain interference classification is faster and more accurate than the recover-thencancel approaches, and compares favorably to the performance of the oracle

Design $\widetilde{M} \times M$ matrix P such that

$$||P(\Phi x_I)||_2 \approx 0$$
 and $||P(\Phi x_S)||_2 \approx ||\Phi x_S||_2$

Note: Not always possible

Depends on structure of \mathcal{X}_S and \mathcal{X}_I

dsp.rice.edu/cs