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 When is it possible to recover the original matrix?

e How can we do this efficiently?

« How many samples will we need?



Low-rank matrices

Singular value decomposition:

M=ULV" w  xdr<d
degrees of freedom



Applications

Recommendation systems

Recovery of incomplete survey data
Analysis of voting data

Analysis of student response data
Localization/multidimensional scaling
Blind deconvolution

Phase recovery

Quantum state tomography



Low-rank matrix recovery

Given:

e a d x d matrix M of rank r
o samples of M on theset(): Y = M,

How can we recover M ?
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Can we replace this with something computationally feasible?



Nuclear norm minimization
Convex relaxation!

d
Replace rank(X) with || X, = Z 0,
=1

(" )

M = arginf X |+
X:Xq=Y

\_ J

If |2 = O(rdlogd), under certain natural assumptions, this
procedure can recover M exactly!

[Candes, Recht, Tao, Plan, Gross, Keshavan, Montenari, Oh, ...]



Matrix completion in practice

e Noise
Y =(M+ Z)q

e Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes



Matrix completion in practice

e Noise
Y =(M+ Z)q

e Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure



1-bit matrix completion

Extreme case

Y = sign(Mg)

Claim: Recovering M from Y is impossible!
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Extreme case

Y = sign(Mg)

Claim: Recovering M from Y is impossible!
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No matter how many samples we obtain, all we can learn is
whether A > 0 or A <0



Is there any hope?

If we consider a noisy version of the problem, recovery
becomes feasible!
Y =sign(Mq + Zg)

ANt Zit A+ Zis A+ Zig A+ Zia
A+ Zo1 AZoos A+ Zag AN+ 2oy
AN+ 231 N+ Zsa N+ 23z AN+ Zsy
AN+ Zyg AN+ Zyo N+ Zys N+ Zyy

M+7 =

Fraction of positive/negative observations tells us something
about A

Example of the power of dithering



Observation model

For (7, ) € () we observe

Vo +1  with probability f(M; ;)
" —1 with probability 1 — f(M; ;)

If f behaves like a CDF, then this is equivalent to
Y;;jj — Sign(Mé:j + Z’i.;j)

where Z; ; is drawn according to a suitable distribution

We will assume that ¢} is drawn uniformly at random



Examples

» Logistic regression / Logistic noise

xr

f()

:1—|—65L’

Z;i ; ~ logistic distribution

e Probit regression / Gaussian noise

f(x) = ®(x/0)
Zf,;jj ~ N(O, 0'2)



Maximum likelihood estimation

Log-likelihood function:

(4,7) €24 (,7)€Q-
/]\7: arg max F'(X) A
X

1
st —|| X|ls < T
do
[ X < @

N\ _/




Recovery of the matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that —||M||. < /7 and [[M |~ < « . If Q is chosen at
random with E|Q| = m > dlogd, then with high probability

@HM — M||% < OaLaﬂa\/ m

where

W @
b= o s —f@) TR T ()



Probit model

2 2
604 ~ O_2€a /20

Theorem (Upper bound achieved by convex ML estimator)

JR 5 Q 2 /6y 2 rd
LU a0 (% 1) ¥t
dzHM MHF_C'(UJrl)e oo -

For any fixed «, optimal bound is achieved by ¢ ~ 1.3a, in
which case the bound reduces to

T = M|} < 31Ca% |5



Synthetic simulations

| M — M||gp i}

1M ||

logy 0



MovielLens data set

100,000 movie ratings on a scale from 1 to 5

Convert to binary outcomes by comparing each rating to
the average rating in the data set

Evaluate by checking if we predict the correct sign

Training on 95,000 ratings and testing on remainder
- “standard” matrix completion: 60% accuracy

1: 64% 2: 56% 3: 44% 4: 65% 5: 74%
- 1-bit matrix completion: 73% accuracy

1: 79% 2: 73% 3: 58% 4: 75% 5: 89%



Conclusions

1-bit matrix completion is hard!
What did you really expect?
Sometimes 1-bit is all we can get...

We have algorithms that are near optimal

Open questions
- Simpler/better/faster/stronger algorithms?
- More general likelihood models?

- Incorporating dynamics?



Thank You!



