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Sensor Explosion



Data Deluge

By 2011, ½ of digital universe will have no home

[The Economist – March 2010]



Dimensionality Overload

How can we extract as 
much information as

possible from a limited 
amount of data?

How can we extract any 
information at all from 
a massive amount of

high-dimensional data?

How can we get as 
much data as possible

into the digital domain?

How can we avoid
having to acquire so

much data?



Dimensionality Reduction

Data is rarely intrinsically high-dimensional

Signals often obey low-dimensional models

– sparsity

– manifolds

– low-rank matrices

The intrinsic dimension    can be much less than 
the ambient dimension    , which enables 
dimensionality reduction



Sparsity

nonzero
entries

samples
large
Fourier
coefficients



Manifolds

• -dimensional parameter
captures the degrees of freedom
of signal

• Signal class forms a    
-dimensional manifold

– rotations, translations

– robot configuration spaces

– signal with unknown translation

– sinusoid of unknown frequency

– faces

– handwritten digits

– speech

– …



Compressive Signal Processing

We would like to operate at the intrinsic dimension at 
all stages of the DSP pipeline 

How can we exploit low-
dimensional models in the design
of signal processing algorithms?

infer

detect
classify
estimate

recover

measure



Compressive 
Measurements



Compressive sensing [Donoho; Candes, Romberg, Tao – 2004]

Replace samples with general linear measurements

Compressive Measurements

measurements

-sparse

sampled
signal



Restricted Isometry Property (RIP)



Johnson-Lindenstrauss Lemma

• Stable projection of a discrete set of     points

• Pick     at random using a sub-Gaussian distribution

• For any fixed   ,           concentrates around
with (exponentially) high probability   

• We preserve the length of all           difference 
vectors simultaneously if                       



JL Lemma Meets RIP

[Baraniuk, M.D., DeVore, Wakin – Const. Approx. 2008]



Hallmarks of Random Measurements

Stable

will preserve information, be robust to noise

Universal

will work with any fixed orthonormal basis (w.h.p.)

Democratic

Each measurement has “equal weight”



Compressive Measurements: Imaging

Rice “single-pixel camera”

© MIT Tech Review

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk – Sig. Proc. Mag. 2008]



Compressive Measurements: ADCs

[Tropp, Laska, Duarte, Romberg, Baraniuk – Trans IT 2010]

“Random demodulator”



Signal Acquisition 
and Recovery



Sparse Signal Recovery

support
values

• Optimization /    -minimization

• Greedy algorithms

– matching pursuit

– orthogonal matching pursuit (OMP)

– regularized OMP

– CoSaMP, Subspace Pursuit, IHT, …



Orthogonal Matching Pursuit

OMP selects one index at a time

Iteration 1:

If     satisfies the RIP of order            , then

Set          and 



Orthogonal Matching Pursuit

Subsequent Iterations:

Projection onto



Interference Cancellation

Lemma

If    satisfies the RIP of order    , then        

for all   such that                      and 

[M.D., Boufounos, Wakin, Baraniuk – J. Selected Topics in Sig. Proc. 2010]



Orthogonal Matching Pursuit

Theorem
Suppose    is    -sparse and
If    satisfies the RIP of order          with constant

, then the     identified at each iteration 
will be a nonzero entry of    .  

Exact recovery after    iterations.

Argument provides simplified proofs for other 
orthogonal greedy algorithms (e.g. ROMP) that are 
robust to noise

[M.D., Wakin – Trans. IT 2010]



Signal Recovery with Quantization

• Most algorithms are designed for bounded errors

• Finite-range quantization leads to saturation and
unbounded errors

• Being able to handle saturated measurements is 
critical in any real-world system



Saturation Strategies

• Rejection: Ignore saturated measurements

• Consistency: Retain saturated measurements.
Use them only as inequality constraints on the 
recovered signal

• If the rejection approach works, the consistency 
approach should automatically do better



• The RIP is not sufficient for the rejection approach

• Example:          

– perfect isometry

– every measurement must be kept

• We would like to be able to say that any submatrix
of     with sufficiently many rows will still satisfy the 
RIP

• Strong, adversarial form of “democracy”

Rejection and Democracy



• Step 1: Concatenate the identity to

Sketch of Proof

Theorem:

If    is a sub-Gaussian matrix with

then        satisfies the RIP of order      with 
probability at least               . 

[M.D., Laska, Boufounos, Baraniuk – Tech. Rep. 2009]



• Step 2: Combine with the “interference cancellation” 
lemma

Sketch of Proof

• The fact that          satisfies the RIP implies that if 
we take     extra measurements,  then we can delete 

arbitrary rows of     and retain the RIP

[M.D., Laska, Boufounos, Baraniuk – Tech. Rep. 2009]



Rejection In Practice

T

-T



Benefits of Saturation?

Saturation
Rate

SNR (dB)

dB
gain

[Laska, Boufounos, D, and Baraniuk, 2009]



Recovery in Structured Noise

What about structured measurement noise?

corrupted
measurements



Justice Pursuit

Fixed

• Since         satisfies the RIP, we can apply standard 
sparse recovery algorithms to recover 

• Analogous to joint source/channel coding for sparse 
signals with erasure channel   



Compressive Signal 
Processing



Compressive Signal Processing

Random measurements are information scalable

When and how can we directly solve signal processing 
problems directly from compressive measurements?

Compressive
measurement system

Target Tracking

Target Detection

Signal Recovery

Signal Identification



Compressive ADCs

DARPA “Analog-to-information” program: 
Build high-rate ADC for signals with sparse spectra

From: R.H. Walden, “Analog to Digital Converters and Associated IC Technologies,” 2008



Example: FM Signals

• Can we directly recover a baseband voice signal 
without recovering the modulated waveform?

• Suppose we have compressive measurements of a 
digital communication signal (FSK modulated)

• Can we directly recover the encoded bitstream
without first recovering the measured waveform?

0 0 0 011



Compressive Radio Receivers

Example Scenario

• 300 MHz bandwidth

• 5 FM signals (12 kHz)

• TV station interference

• Acquire compressive
measurements at 30 MHz 
(20 x undersampled)

We must simultaneously solve several problems

cancel
known

interferers

detect
signal
energy

filter
signals of
interest

demod
baseband
signals



Energy Detection

We need to identify where in frequency the important 
signals are located

Correlate measurements with projected tones

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]



Filtering 

If we have multiple signals, must be able to filter 
to isolate and cancel interference

: Discrete prolate spheroidal sequences

original after interference
cancellation

after isolation
filtering

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]



Unsynchronized Demodulation

We can use a phase-locked-loop (PLL) to track 
deviations in frequency by directly operating on 
compressive measurements

We can directly demodulate signals from compressive 
measurements without recovery 

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]



CSP – Summary

• Compressive signal processing

– integrates sensing, compression, processing

– exploits signal sparsity/compressibility

– enables new sensing modalities, architectures, systems

– exploits randomness at many levels

• Why CSP works: preserves information in signals 
with concise geometric structure

sparse signals | manifolds | low-dimensional models

• Information scalability for compressive inference

– compressive measurements ~ sufficient statistics

– much less computation required than for recovery



Looking Forward



Some Open Problems

• Links with information theory

– ex: random projection design via codes

– ex: new decoding algorithms (BP, etc.)

– ex: democracy and multiple description coding

• Links with machine learning

– ex: Johnson-Lindenstrauss, manifold embedding, RIP

• Processing/inference on random measurements

• Multi-signal CSP

– sensor networks, localization, multi-modal data…

• New sensors

– single-pixel gas sensor, hyperspectral cameras

– scientific imaging (astronomy, microscopy)

– genomic data, DNA microarrays



Beyond Sparsity

• Learned dictionaries, structured sparsity

• Manifold models

– connections to “finite rate of innovation”

• Low-rank matrix models

• Models for non-numerical data

– graphical models

Acquisition

• how to design
• practical devices
• adaptivity

Recovery

• practical algorithms
• robust 
• stable

Processing

• classification
• estimation
• learning
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