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Compressed Sensing (CS)

 Observe

 Random measurements

-sparse



Randomness in CS
New signal models
New applications
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 Appeal to known results on singular values of 
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 This is not light reading…



“Proof” of RIP

“It uses a lot of newer 
mathematical techniques, 
things that were developed 
in the 80's and 90's. 
Noncommutative 
geometry, random 
matrices … the proof is 
very… hip.”  - Hal



Dimensionality Reduction

 Point dataset lives in high-dimensional space

 Number of data points is small

 Compress data to few dimensions

 We do not lose information – can distinguish data 
points



Johnson-Lindenstrauss Lemma



Johnson-Lindenstrauss Lemma

 Proof relies on a simple concentration of measure 
inequality



 Gaussian

 Bernoulli [Achlioptas]

Favorable JL Distributions



 “Database-friendly” [Achlioptas]

 Fast JL Transform [Ailon, Chazelle]

Favorable JL Distributions

: Sparse Gaussian matrix 
: Fast Hadamard transform
: Random modulation
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 Theorem: Supposing F is drawn from a JL-favorable 
distribution, then with probability at least 1 - , F
meets the RIP with                           .

 Key idea

 construct a set of points Q

 apply JL lemma (union bound on concentration of measure)

 show that isometry on Q extends to isometry on

JL Meets CS  [Baraniuk, DeVore, Davenport, Wakin]
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 Consider only

Pick Q such that for any
there exists a     such that 
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Bootstrapping

 Apply JL to get

 Define A to be the smallest number such that

for all    with

 For any   , pick the closest

 Hence
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Universality

 Easy to see why random matrices are universal 
with respect to sparsity basis

 Resample your points in new basis – JL provides 
guarantee for arbitrary set of points

 Gaussian

 Bernoulli

 Others…
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 Better understanding of the relevant geometry

 provides simple proofs of key CS / n-width results

 New conditions on what it takes to be a good CS 
matrix

 concentration of measure around the mean

 New signal models

 manifolds  

 Natural setting for studying information scalability

 detection

 estimation

 learning

Summary



Randomness in CS
New signal models

New applications



Manifold Compressive Sensing

 Locally Euclidean topological space

 Typically for signal processing

 nonlinear K-dimensional “surface” in signal space RN

 potentially very low dimensional signal model

 Examples (all nonlinear)

 chirps

 modulation schemes

 image articulations



Stable Manifold Embedding

Stability [Wakin, Baraniuk]

Number of measurements required



Example:  Linear Chirps

original initial guess initial error

N = 256

K = 2 (start & end frequencies)

M = 5:   55% success

M = 30: 99% success



Manifold Learning

 Manifold learning algorithms
for sampled data in RN

 ISOMAP, LLE, HLLE, etc.

 Stable embedding preserves 
key properties in RM

 ambient and geodesic distances

 dimension and volume of the manifold

 path lengths and curvature

 topology, local neighborhoods, and angles

 etc…

 Can we learn these properties from projections in RM ?

 savings in computation, storage, acquisition costs



Example:  Manifold Learning

ISOMAP HLLE
Laplacian

Eigenmaps

R4096

RM

M=15 M=15M=20



Randomness in CS
New signal models
New applications



Detection – Matched Filter

 Testing for presence of a known signal s

 Sufficient statistic for detecting s:



Compressive Matched Filter

 Now suppose we have CS measurements

 when      is an orthoprojector,         remains white noise

 new sufficient statistic is simply the 
compressive matched filter (smashed filter?)



CMF – Performance

 ROC curve for Neyman-Pearson detector:

 From JL lemma, for random orthoprojector

 Thus 



CMF – Performance



Generalization – Classification

 More generally, suppose we want to classify 
between several possible signals

by the JL Lemma 
these distances 
are preserved



CMF as an Estimator

 How well does the compressive matched filter 
estimate the output of the true matched filter?

With probability at least

where 

[Alon, Gibbons, Matias, Szegedy; 

Davenport, Baraniuk, Wakin]
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 Random matrices work for CS for the same reason 
that they work for the JL lemma

 Another way to characterize “good” CS matrices

 Allows us to extend CS to new signal models

 manifold/parametric models

 Allows us to extend CS to new settings

 detection

 classification/learning

 estimation


