

# The Johnson-Lindenstrauss Lemma Meets Compressed Sensing

Mark Davenport

*Richard Baraniuk Ron DeVore Michael Wakin* 

dsp.rice.edu/cs

# **Compressed Sensing (CS)**

• Observe  $y = \Phi x$ 



#### Random measurements

Randomness in CS New signal models New applications

# **Restricted Isometry Property**

What makes a "good" CS matrix?

# **Restricted Isometry Property**

- What makes a "good" CS matrix?
- Let  $\Sigma_K$  denote the set of all *K*-sparse signals.

 $\Phi$  has RIP of order K if there exists  $\epsilon \in (0, 1)$  such that

 $(1-\epsilon)\|x\|_{\ell_2}^2 \leq \|\Phi x\|_{\ell_2}^2 \leq (1+\epsilon)\|x\|_{\ell_2}^2$ for all  $x\in \Sigma_K$ 

# **Restricted Isometry Property**

- What makes a "good" CS matrix?
- Let  $\Sigma_K$  denote the set of all *K*-sparse signals.

 $\Phi$  has RIP of order K if there exists  $\epsilon \in (0, 1)$  such that

$$(1-\epsilon)\|x\|_{\ell_2}^2 \le \|\Phi x\|_{\ell_2}^2 \le (1+\epsilon)\|x\|_{\ell_2}^2$$



# **Proof of RIP**

 Random matrix will satisfy RIP for largest possible K with high probability [Candès, Tao; Donoho]

# **Proof of RIP**

- Random matrix will satisfy RIP for largest possible K with high probability [Candès, Tao; Donoho]
- Appeal to known results on singular values of random matrices [Davidson, Szarek; Litvak, Pajor, Rudelson, Tomczak-Jaegermann]

# **Proof of RIP**

- Random matrix will satisfy RIP for largest possible K with high probability [Candès, Tao; Donoho]
- Appeal to known results on singular values of random matrices [Davidson, Szarek; Litvak, Pajor, Rudelson, Tomczak-Jaegermann]
- This is not light reading...

### "Proof" of RIP



"It uses a lot of newer mathematical techniques, things that were developed in the 80's and 90's. Noncommutative geometry, random matrices ... the proof is very... hip." - Hal

# **Dimensionality Reduction**

- Point dataset lives in high-dimensional space
- Number of data points is small
- Compress data to few dimensions
- We do not lose information can distinguish data points



### **Johnson-Lindenstrauss Lemma**

Let  $\epsilon \in (0,1)$  be given. For every set Q of |Q| points in  $\mathbb{R}^N$ , if

$$M = O\left(\frac{\log(|Q|/\delta)}{\epsilon^2}\right),\,$$

a randomly drawn  $M \times N$  matrix  $\Phi$  will satsify

$$(1-\epsilon)\|u-v\|_{\ell_2^N}^2 \le \|\Phi u - \Phi v\|_{\ell_2^M}^2 \le (1+\epsilon)\|u-v\|_{\ell_2^N}^2$$

for all  $u, v \in Q$  with probability at least  $1 - \delta$ .

# **Johnson-Lindenstrauss Lemma**

Let  $\epsilon \in (0,1)$  be given. For every set Q of |Q| points in  $\mathbb{R}^N$ , if

$$M = O\left(\frac{\log(|Q|/\delta)}{\epsilon^2}\right),\,$$

a randomly drawn  $M \times N$  matrix  $\Phi$  will satsify

$$(1-\epsilon)\|u-v\|_{\ell_2^N}^2 \le \|\Phi u - \Phi v\|_{\ell_2^M}^2 \le (1+\epsilon)\|u-v\|_{\ell_2^N}^2$$

for all  $u, v \in Q$  with probability at least  $1 - \delta$ .

 Proof relies on a simple concentration of measure inequality

$$\mathbf{P}(|\|\Phi x\|_{\ell_2^M}^2 - \|x\|_{\ell_2^N}^2| \ge \epsilon \|x\|_{\ell_2^N}^2) \le 2e^{-M\epsilon^2/4}$$

### **Favorable JL Distributions**

Gaussian

$$\phi_{i,j} \sim \mathcal{N}\left(0, \frac{1}{M}\right)$$

Bernoulli [Achlioptas]

$$\phi_{i,j} := \begin{cases} +\frac{1}{\sqrt{M}} \\ -\frac{1}{\sqrt{M}} \end{cases}$$

with probability  $\frac{1}{2}$ , with probability  $\frac{1}{2}$ 

# **Favorable JL Distributions**

#### "Database-friendly" [Achlioptas]

$$\phi_{i,j} := \begin{cases} +\sqrt{\frac{3}{M}} \\ 0 \\ -\sqrt{\frac{3}{M}} \end{cases}$$

with probability 
$$\frac{1}{6}$$
,  
with probability  $\frac{2}{3}$ ,  
with probability  $\frac{1}{6}$ 

#### • Fast JL Transform [Ailon, Chazelle]

#### $\Phi = PHD$

- P : Sparse Gaussian matrix
- H : Fast Hadamard transform
- D : Random modulation

• **Theorem**: Supposing  $\Phi$  is drawn from a JL-favorable distribution, then with probability at least  $1 - \delta$ ,  $\Phi$  meets the RIP with  $M = O(K \log(N/K))$ .

- **Theorem**: Supposing  $\Phi$  is drawn from a JL-favorable distribution, then with probability at least  $1 \delta$ ,  $\Phi$  meets the RIP with  $M = O(K \log(N/K))$ .
- Key idea
  - $\Box$  construct a set of points Q



- **Theorem**: Supposing  $\Phi$  is drawn from a JL-favorable distribution, then with probability at least  $1 \delta$ ,  $\Phi$  meets the RIP with  $M = O(K \log(N/K))$ .
- Key idea
  - $\Box$  construct a set of points Q
  - apply JL lemma (union bound on concentration of measure)



- **Theorem**: Supposing  $\Phi$  is drawn from a JL-favorable distribution, then with probability at least 1  $\delta$ ,  $\Phi$  meets the RIP with  $M = O(K \log(N/K))$ .
- Key idea
  - $\Box$  construct a set of points Q
  - apply JL lemma (union bound on concentration of measure)
  - $\square$  show that isometry on Q extends to isometry on  $\Sigma_K$



 $\Phi$  has RIP of order *K* if there exists  $\epsilon \in (0, 1)$  such that

 $(1-\epsilon)\|x\|_{\ell_2}^2 \leq \|\Phi x\|_{\ell_2}^2 \leq (1+\epsilon)\|x\|_{\ell_2}^2$ for all  $x \in \Sigma_K$ 

 $\Phi$  has RIP of order *K* if there exists  $\epsilon \in (0, 1)$  such that

$$(1-\epsilon)\|x\|_{\ell_2}^2 \leq \|\Phi x\|_{\ell_2}^2 \leq (1+\epsilon)\|x\|_{\ell_2}^2$$
for all  $x \in \Sigma_K$ 

• Fix a *K*-dimensional subspace



 $\Phi$  has RIP of order *K* if there exists  $\epsilon \in (0, 1)$  such that

$$(1-\epsilon)\|x\|_{\ell_2}^2 \leq \|\Phi x\|_{\ell_2}^2 \leq (1+\epsilon)\|x\|_{\ell_2}^2$$
for all  $x \in \Sigma_K$ 

- Fix a K-dimensional subspace
- Consider only  $\|x\|_{\ell_2} \leq 1$



 $\Phi$  has RIP of order *K* if there exists  $\epsilon \in (0, 1)$  such that

$$(1-\epsilon)\|x\|_{\ell_2}^2 \leq \|\Phi x\|_{\ell_2}^2 \leq (1+\epsilon)\|x\|_{\ell_2}^2$$
for all  $x \in \Sigma_K$ 

- Fix a K-dimensional subspace
- Consider only  $\|x\|_{\ell_2} \leq 1$



Pick Q such that for any x there exists a q such that

$$\|x - q\|_{\ell_2} \le \frac{\epsilon}{4}$$

Apply JL to get

 $(1-\epsilon/2)\|q\|_{\ell_2} \le \|\Phi q\|_{\ell_2} \le (1+\epsilon/2)\|q\|_{\ell_2}$ 

#### Apply JL to get

$$(1-\epsilon/2)\|q\|_{\ell_2} \le \|\Phi q\|_{\ell_2} \le (1+\epsilon/2)\|q\|_{\ell_2}$$

Define A to be the smallest number such that

$$\|\Phi x\|_{\ell_2} \le (1+A)\|x\|_{\ell_2}$$

for all x with  $\|x\|_{\ell_2} \leq 1$ 

Apply JL to get

 $(1 - \epsilon/2) \|q\|_{\ell_2} \le \|\Phi q\|_{\ell_2} \le (1 + \epsilon/2) \|q\|_{\ell_2}$ 

Define A to be the smallest number such that

$$\|\Phi x\|_{\ell_2} \le (1+A)\|x\|_{\ell_2}$$

for all x with  $\|x\|_{\ell_2} \leq 1$ 

• For any x, pick the closest q $\|\Phi x\|_{\ell_2} \leq \|\Phi q\|_{\ell_2} + \|\Phi(x-q)\|_{\ell_2}$  $\leq 1 + \epsilon/2 + (1+A)\epsilon/4$ 

Apply JL to get

 $(1 - \epsilon/2) \|q\|_{\ell_2} \le \|\Phi q\|_{\ell_2} \le (1 + \epsilon/2) \|q\|_{\ell_2}$ 

• Define A to be the smallest number such that  $\|\Phi_n\| \leq (1 + 4) \|n\|$ 

 $\|\Phi x\|_{\ell_2} \le (1+A)\|x\|_{\ell_2}$ 

for all x with  $\|x\|_{\ell_2} \leq 1$ 

For any x, pick the closest q  $\|\Phi x\|_{\ell_2} \leq \|\Phi q\|_{\ell_2} + \|\Phi(x-q)\|_{\ell_2}$  $\leq 1 + \epsilon/2 + (1+A)\epsilon/4$ Hence  $1 + A \leq 1 + \epsilon/2 + (1+A)\epsilon/4 \Rightarrow A \leq \epsilon$ 

For each K-dimensional space, we need  $(12/\epsilon)^K$ 

For each K-dimensional space, we need  $(12/\epsilon)^K$ 

 $\binom{N}{K} \leq \left(\frac{eN}{K}\right)^{K} \text{ spaces to consider}$ 

For each K-dimensional space, we need  $(12/\epsilon)^K$ 

• 
$$\binom{N}{K} \leq \left(\frac{eN}{K}\right)^K$$
 spaces to consider

- How many measurements do we need to get RIP with probability at least  $1-\delta?$ 

For each K-dimensional space, we need  $(12/\epsilon)^K$ 

• 
$$\binom{N}{K} \leq \left(\frac{eN}{K}\right)^K$$
 spaces to consider

- How many measurements do we need to get RIP with probability at least  $1 - \delta$ ?

$$M = O\left(\frac{\log(|Q|/\delta)}{\epsilon^2}\right)$$

 $= C_{\epsilon,\delta} K \log(N/K)$ 

# Universality

 Easy to see why random matrices are universal with respect to sparsity basis



- Resample your points in new basis JL provides guarantee for *arbitrary* set of points
  - Gaussian
  - Bernoulli
  - Others...

Better understanding of the relevant geometry
 provides simple proofs of key CS / *n*-width results

- Better understanding of the relevant geometry
   provides simple proofs of key CS / n-width results
- New conditions on what it takes to be a good CS matrix
  - concentration of measure around the mean

- Better understanding of the relevant geometry
   provides simple proofs of key CS / n-width results
- New conditions on what it takes to be a good CS matrix
  - concentration of measure around the mean
- New signal models
  - manifolds

- Better understanding of the relevant geometry
   provides simple proofs of key CS / n-width results
- New conditions on what it takes to be a good CS matrix
  - concentration of measure around the mean
- New signal models
  - manifolds
- Natural setting for studying *information scalability*
  - detection
  - estimation
  - learning

Randomness in CS **New signal models** New applications

# **Manifold Compressive Sensing**

- Locally Euclidean topological space
- Typically for signal processing
  - nonlinear K-dimensional "surface" in signal space  $R^N$
  - potentially very low dimensional signal model
- Examples (all nonlinear)
  - chirps
  - modulation schemes
  - image articulations





# **Stable Manifold Embedding**

Stability [Wakin, Baraniuk]

$$(1-\epsilon) ||x-y||_2 \le ||\Phi x - \Phi y||_2 \le (1+\epsilon) ||x-y||_2$$

Number of measurements required

$$M = C_1 K \log(C_2 N)$$



# **Example: Linear Chirps**



*N* = 256

- K = 2 (start & end frequencies)
- M = 5: 55% success
- M = 30: 99% success

# **Manifold Learning**

- Manifold learning algorithms for sampled data in R<sup>N</sup>
   ISOMAP, LLE, HLLE, etc.
- Stable embedding preserves key properties in  $R^{\scriptscriptstyle M}$ 
  - ambient and geodesic distances
  - dimension and volume of the manifold
  - path lengths and curvature
  - topology, local neighborhoods, and angles

• etc...

Can we learn these properties from projections in R<sup>M</sup>?
 savings in computation, storage, acquisition costs



# **Example: Manifold Learning**



Randomness in CS New signal models **New applications** 

#### **Detection – Matched Filter**

$$H_0 : x = n$$
$$H_1 : x = s + n$$

- Testing for presence of a known signal s
- Sufficient statistic for detecting s:

$$t = \langle x, s \rangle$$

### **Compressive Matched Filter**

$$H_0 : x = n$$
$$H_1 : x = s + n$$

• Now suppose we have CS measurements  $y = \Phi x$ 

- $\square$  when  $\Phi$  is an orthoprojector,  $\Phi n$  remains white noise
- new sufficient statistic is simply the compressive matched filter (smashed filter?)

$$t' = \langle y, \Phi s \rangle$$

#### **CMF – Performance**

ROC curve for Neyman-Pearson detector:

$$P_D(\alpha) = Q\left(Q^{-1}(\alpha) - \frac{\|\Phi s\|_2}{\sigma}\right)$$

From JL lemma, for random orthoprojector  $\, \Phi \,$ 

$$\|\Phi s\|_2 \approx \sqrt{\frac{M}{N}} \|s\|_2$$

Thus

$$P_D(\alpha) \approx Q\left(Q^{-1}(\alpha) - \sqrt{\frac{M}{N}} \frac{\|s\|_2}{\sigma}\right)$$

#### **CMF – Performance**



# **Generalization – Classification**

 More generally, suppose we want to classify between several possible signals



### **CMF** as an **Estimator**

How well does the compressive matched filter estimate the output of the true matched filter?

With probability at least 
$$1 - \delta$$
  
 $|\langle \Phi x, \Phi s \rangle - \langle x, s \rangle| \leq \kappa_{\delta} \frac{||x||_{2} ||s||_{2}}{\sqrt{M}}$   
where  
 $\kappa_{\delta} = 2\sqrt{12 \log\left(\frac{6}{\delta}\right)}$ 
Alon, Gibbons, Matias, Szegedy;

2

6

Μ

8

x 10

n

 Random matrices work for CS for the same reason that they work for the JL lemma

- Random matrices work for CS for the same reason that they work for the JL lemma
- Another way to characterize "good" CS matrices

- Random matrices work for CS for the same reason that they work for the JL lemma
- Another way to characterize "good" CS matrices
- Allows us to extend CS to new signal models
   manifold/parametric models

- Random matrices work for CS for the same reason that they work for the JL lemma
- Another way to characterize "good" CS matrices
- Allows us to extend CS to new signal models
   manifold/parametric models
- Allows us to extend CS to new settings
  - detection
  - classification/learning
  - estimation