The Fundamentals of Compressive Sensing

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

Sensor explosion

Data deluge

Digital revolution

"If we sample a signal at twice its highest frequency, then we can recover it exactly." Whittaker-Nyquist-Kotelnikov-Shannon

Dimensionality reduction

Data with high-frequency content is often not intrinsically high-dimensional

Signals often obey *low-dimensional models*

- sparsity
- manifolds
- low-rank matrices

The "intrinsic dimension" ${\cal S}\,$ can be much less than the "ambient dimension" N

Sample-then-compress paradigm

- Standard paradigm for digital data acquisition
 - *sample* data (ADC, digital camera, ...)
 - compress data (signal-dependent, nonlinear)

- Sample-and-compress paradigm is wasteful
 - samples cost \$\$\$ and/or time

Exploiting low-dimensional structure

How can we exploit low-dimensional structure in the design of signal processing algorithms?

We would like to operate at the *intrinsic dimension* at all stages of the information-processing pipeline

Compressive sensing

Replace samples with general *linear measurements*

[Donoho; Candès, Romberg, Tao - 2004]

Sparsity

N pixels

$S \ll N$ large wavelet coefficients

Sparsity

Sparsity

Core theoretical challenges

• How should we design the matrix Φ so that M is as small as possible?

Core theoretical challenges

• How should we design the matrix Φ so that M is as small as possible?

Core theoretical challenges

• How should we design the matrix Φ so that M is as small as possible?

• How can we recover x from the measurements y?

Outline

- Sensing matrices and real-world compressive sensors
 - (structured) randomness
 - tomography, cameras, ADCs, ...
- Sparse signal recovery
 - convex optimization
 - greedy algorithms
- Beyond sparsity
 - parametric models, manifolds, low-rank matrices, ...

Sensing Matrix Design

Analog sensing is matrix multiplication

Restricted Isometry Property (RIP)

$$1 - \delta \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta \qquad \|x_1\|_0, \|x_2\|_0 \le S$$

RIP and stability

If we want to guarantee that

$$\|x - \widehat{x}\|_2 \le C \|e\|_2$$

then we must have

$$\frac{1}{C} \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \qquad \|x\|_0 \le 2S$$

Sub-Gaussian distributions

- As a first example of a matrix Φ which satisfies the RIP, we will consider random constructions
- Sub-Gaussian random variable: $\mathbb{E}\left(e^{Xt}\right) \leq e^{c^2t^2/2}$
 - Gaussian
 - Bernoulli/Rademacher (± 1)
 - any bounded distribution
- For any x, if the entries of Φ are sub-Gaussian, then there exists a δ such that with high probability

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2$$

Johnson-Lindenstrauss Lemma

• Stable projection of a discrete set of P points

- Pick Φ at *random* using a sub-Gaussian distribution
- For any fixed x, $\|\Phi x\|_2$ concentrates around $\|x\|_2$ with (exponentially) high probability
- We preserve the length of all $O(P^2)$ difference vectors simultaneously if $M = O(\log P^2) = O(\log P)$.

JL Lemma meets RIP

$$1 - \delta \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \le 1 + \delta \qquad \|x\|_0 \le 2S$$

[Baraniuk, Davenport, DeVore, Wakin -2008]

RIP matrix: Option 1

- Choose a *random matrix*
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a "random subspace"

$$M = O(S \log(N/S)) \ll N$$

[Baraniuk, Davenport, DeVore, Wakin -2008]

RIP matrix: Option 2

• Random Fourier submatrix

$$M = O(S \log^p(N/S)) \ll N$$

[Candès and Tao - 2006]

RIP matrix: Option 3 "Fast JL Transform"

- By first multiplying by random signs, a random Fourier submatrix can be used for efficient JL embeddings
- If you multiply the columns of *any* RIP matrix by random signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010]

Hallmarks of random measurements

Stable

With high probability, Φ will preserve information, be robust to noise

Universal (Options 1 and 3)

 Φ will work with *any* fixed orthonormal basis (w.h.p.)

Democratic

Each measurement has "equal weight"

Compressive Sensors in Practice

Tomography in the abstract

Fourier-domain interpretation

- Each projection gives us a "slice" of the 2D Fourier transform of the original image
- Similar ideas in MRI
- Traditional solution: Collect lots (and lots) of slices

Why CS?

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

CS for MRI reconstruction

Backproj., 29.00dB

Min TV, 34.23dB [CR]

Pediatric MRI

Traditional MRI

CS MRI

4-8 x faster!

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010]

"Single-Pixel Camera"

$$y[m] = \sum_{n \in I_m} x[n]$$

$$x[n] = \iint_{\text{pixel } n} x(t_1, t_2) \, dt_1 \, dt_2$$

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]

TI Digital Micromirror Device

Single-Pixel Camera

256×384 pixels

Compressive ADCs

DARPA "Analog-to-information" program: Build high-rate ADC for signals with sparse spectra

Compressive ADCs

DARPA "Analog-to-information" program: Build high-rate ADC for signals with sparse spectra

[Le - 2005; Walden - 2008]

Compressive ADC approaches

- Random sampling
 - long history of related ideas/techniques
 - random sampling for Fourier-sparse data equivalent to obtaining random Fourier coefficients for sparse data
- Random demodulation
 - CDMA-like spreading followed by low-rate uniform sampling
 - modulated wideband converter
 - compressive multiplexor, polyphase random demodulator
- Both approaches are specifically tailored for Fourier-sparse signals

Random demodulator

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]

Random demodulator

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]

Empirical results

 $M \approx 1.7S \log(N/S + 1)$

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]

Compressive sensors wrap-up

- CS is built on a theory of *random measurements*
 - Gaussian, Bernoulli, random Fourier, fast JLT
 - stable, universal, democratic
- Randomness can often be built into real-world sensors
 - tomography
 - cameras
 - compressive ADCs
 - microscopy
 - astronomy
 - sensor networks
 - DNA microarrays and biosensing
 - radar

- ...

Sparse Signal Recovery

Sparse signal recovery

- Optimization / ℓ_1 -minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - Stagewise OMP (StOMP), regularized OMP (ROMP)
 - CoSaMP, Subspace Pursuit, IHT, ...

Sparse recovery: Noiseless case

given
$$y = \Phi x$$

find x

• ℓ_0 -minimization: $\hat{x} = \underset{x \in \mathbb{R}^N}{\arg \min} \|x\|_0 \qquad \longleftarrow \underset{NP-Hard}{nonconvex}$ s.t. $y = \Phi x$ • ℓ_1 -minimization: $\hat{x} = \underset{x \in \mathbb{R}^N}{\arg \min} \|x\|_1 \qquad \longleftarrow \underset{linear \ program}{convex}$ s.t. $y = \Phi x$

• If Φ satisfies the RIP, then ℓ_0 and ℓ_1 are equivalent!

[Donoho; Candès, Romberg, Tao - 2004]

Why ℓ_1 -minimization works

Sparse recovery: Noisy case

Suppose we observe $y = \Phi x + e$, where $||e||_2 \le \epsilon$

$$\widehat{x} = \underset{x \in \mathbb{R}^{N}}{\arg\min} \|x\|_{1}$$

s.t.
$$\|y - \Phi x\|_{2} \le \epsilon$$

$$\|\widehat{x} - x\|_2 \le C_0 \epsilon$$

Similar approaches can handle Gaussian noise added to either the signal or the measurements

Sparse recovery: Non-sparse signals

In practice, x may not be exactly S-sparse

$$\widehat{x} = \underset{x \in \mathbb{R}^{N}}{\arg\min} \|x\|_{1}$$

s.t.
$$\|y - \Phi x\|_{2} \le \epsilon$$

$$\|\widehat{x} - x\|_2 \le C_0 \epsilon + C_1 \frac{\|x - x_S\|_1}{\sqrt{S}}$$

Greedy algorithms: Key idea

If we can determine $\Lambda = \operatorname{supp}(x)$, then the problem becomes *over*-determined.

In the absence of noise,

$$\Phi_{\Lambda}^{\dagger} y = (\Phi_{\Lambda}^{T} \Phi_{\Lambda})^{-1} \Phi_{\Lambda}^{T} y$$
$$= (\Phi_{\Lambda}^{T} \Phi_{\Lambda})^{-1} \Phi_{\Lambda}^{T} \Phi_{\Lambda} x$$
$$= x$$

Matching Pursuit

Select one index at a time using a simple *proxy* for x

Set u = x and $v = e_j$

 $|p_j - x_j| \le \delta \|x\|_2$

Matching Pursuit

Obtain initial estimate of x

$$x^{(1)} = p_{j^*} e_{j^*}$$

Update proxy and iterate

$$p = \Phi^T (y - \Phi x^{(j-1)})$$
$$j^* = \arg \max_j |p_j|$$
$$x^{(j)} = x^{(j-1)} + p_{j^*} e_{j^*}$$

Iterative Hard Thresholding (IHT)

RIP guarantees convergence and accurate/stable recovery

[Blumensath and Davies - 2008]

Orthogonal Matching Pursuit

Replace $x^{(j)} = x^{(j-1)} + p_{j^*}e_{j^*}$ with $x^{(j)} = \operatorname*{arg\,min}_x \|y - \Phi_{\Lambda}x\|_2$

where Λ is the set of indices selected up to iteration j

$$j^* = \arg\max_j |\langle Py, P\Phi_j \rangle|$$

Orthogonal Matching Pursuit

Suppose x is S-sparse and $y = \Phi x$. If Φ satisfies the RIP of order S + 1 with constant $\delta < 1/3\sqrt{S}$, then the j^* identified at each iteration will be a nonzero entry of x.

[Davenport and Wakin - 2010]

Extensions of OMP

- StOMP, ROMP
 - select many indices in each iteration
 - picking indices for which p_j is "comparable" leads to increased stability and robustness
- CoSaMP, Subspace Pursuit, ...
 - allow indices to be discarded
 - strongest guarantees, comparable to ℓ_1 -minimization

$$\|x - x^{(j+1)}\|_{2} \le \frac{1}{2} \|x - x^{(j)}\|_{2} + C\|e\|_{2}$$
$$\|x - x^{j}\|_{2} \le 2^{-j} \|x\|_{2} + 2C\|e\|_{2}$$

[Needell and Tropp - 2010]

Beyond Sparsity

Beyond sparsity

- Not all signal models fit neatly into the "sparse" setting
- The concept of "dimension" has many incarnations
 - "degrees of freedom"
 - constraints
 - parameterizations
 - signal families
- How can we exploit these low-dimensional models?
- I will focus primarily on just a few of these
 - structured sparsity, finite-rate-of-innovation, manifolds, low-rank matrices

Structured sparsity

- Sparse signal model captures simplistic primary structure
- Modern compression/processing algorithms capture *richer secondary coefficient structure*

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images

Sparse signals

Traditional sparse models allow all possible S-dimensional subspaces

Wavelets and tree-sparse signals

Model: S nonzero coefficients lie on a connected tree

[Baraniuk, Cevher, Duarte, Hegde - 2010]

Other useful models

- Clustered coefficients
 - tree sparse
 - block sparse
 - Ising models

- Dispersed coefficients
 - spike trains
 - pulse trains

[Baraniuk, Cevher, Duarte, Hegde - 2010]

Finite rate of innovation

Continuous-time notion of sparsity: "rate of innovation"

Examples:

Rate of innovation: Expected number of innovations per second

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]

Sampling signals with FROI

We would like to obtain samples of the form

$$y[m] = \phi(t) * x(t)|_{t=mT_s} = \langle \phi(mT_s - t), x(t) \rangle$$

where we sample at the *rate of innovation*.

Requires careful construction of sampling kernel $\phi(t)$.

Drawbacks:

- need to repeat process for each signal model
- stability

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]

Manifolds

- S-dimensional parameter $\theta \in \Theta$ captures the degrees of freedom of signal
- Signal class forms an S-dimensional *manifold*
 - rotations, translations
 - robot configuration spaces
 - signal with unknown translation
 - sinusoid of unknown frequency
 - faces
 - handwritten digits
 - speech

Random projections

• For sparse signals, random projections preserve geometry

• What about manifolds?

Stable manifold embedding

Theorem

Let $\ \mathcal{M} \subseteq \mathbb{R}^N$ be a compact S -dimensional manifold with

- condition number 1/ au (curvature, self-avoiding)
- volume V

Let Φ be a random $M\times N$ projection with

 $M = O(S \log(NV/\tau))$

Then with high probability, and any $x_1, x_2 \in \mathcal{M}$

$$1 - \delta \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta$$

 \mathbb{R}^{N}

Compressive sensing with manifolds

- Same sensing protocols/devices
- Different reconstruction models
- Measurement rate depends on *manifold dimension*
- Stable embedding guarantees robust recovery

Low-rank matrices

Singular value decomposition:

$$X = U\Sigma V^* \qquad \Longrightarrow \qquad$$

 $\approx NR \ll N^2 \label{eq:resonance}$ degrees of freedom

Matrix completion

- Collaborative filtering ("Netflix problem")
- How many samples will we need?

 $M \geq CNR$

• Coupon collector problem

 $M \geq N \log N$

Application: Collaborative filtering

The "Netflix Problem"

 $X_{i,j}=$ how much user $\,i$ likes movie j

Rank 1 model: u_i = how much user i likes romantic movies

$$v_j =$$
 amount of romance in movie j
 $X_{i,j} = u_i v_j$

Rank 2 model: w_i = how much user i likes zombie movies

 $x_j =$ amount of zombies in movie j $X_{i,j} = u_i v_j + w_i x_j$

Low-rank matrix recovery

Given:

- an $N \times N$ matrix X of rank R
- linear measurements $y = \mathcal{A}(X)$

How can we recover X ?

$$\widehat{X} = \underset{X:\mathcal{A}(X)=y}{\operatorname{arg\,inf}} \operatorname{rank}(X)$$

Can we replace this with something computationally feasible?
Nuclear norm minimization

Convex relaxation!

Replace rank(X) with
$$||X||_* = \sum_{j=1}^N |\sigma_j|$$

The "nuclear norm" is just the ℓ_1 -norm of the vector of singular values

$$\widehat{X} = \underset{X:\mathcal{A}(X)=y}{\operatorname{arg\,inf}} \operatorname{rank}(X)$$

[Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]

Nuclear norm minimization

Convex relaxation!

Replace rank(X) with
$$||X||_* = \sum_{j=1}^N |\sigma_j|$$

The "nuclear norm" is just the ℓ_1 -norm of the vector of singular values

$$\widehat{X} = \underset{X:\mathcal{A}(X)=y}{\operatorname{arg\,inf}} \|X\|_{*}$$

$$M = O(NR \log N)$$

[Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]

Robust PCA

In the presence of outliers, our data matrix ${f X}$ is no longer low-rank because some of the entries have been corrupted

How to perform separation?

Application: Removing face illumination

[Candès et al., 2009]

Application: Background subtraction

[Candès et al., 2009]

Conclusions

Conclusions

- The theory of compressive sensing allows for new sensor designs, but requires new techniques for signal recovery
- "Conciseness" has many incarnations
 - structured sparsity
 - finite rate of innovation, manifold, parametric models
 - low-rank matrices
- We can still use compressive sensing even when signal recovery is not our goal
- The theory/techniques from compressive sensing can be tremendously useful in a variety of other contexts