

Manifold models for classification

- Manifold models aid in overcoming the "curse of dimensionality" by providing a low-dimensional model for high-dimensional data
- Classification algorithms can be designed to exploit these models

Manifold models

Many high-dimensional signal ensembles possess intrinsic low-dimensional geometric structure

Matched filters and manifolds

The matched filter can be viewed as a "nearest manifold" classifier

Two stage approach:

- find ML estimate of parameter for each manifold
- classify according to which manifold is closest

Manifold-Based Approaches for Improved Classification

Mark A. Davenport, Chinmay Hegde **Richard G. Baraniuk**

Rice University

Topology-aware classification

 Number of projections required is linear in the intrinsic dimension K and only logarithmic in the ambient dimension N • Bounds depend on manifold parameters like volume, curvature

Classification using multiscale manifold navigation

Manifolds generated by images with sharp edges are nowhere differentiable

- parameter estimation for such manifolds becomes unstable
- exploit the *multiscale structure* of such manifolds using Newton's method and nested smoothing kernels
- model aware classification

Classification using manifold learning

If we do not explicitly know the manifolds, we must learn the manifolds from training data • training data is often *coarsely* sampled • exploit manifold structure in *testing data* in

- addition to training data
- model blind classification

The random projection method

Compute *random linear measurements* of highdimensional data

> M imes 1projections

Let $\mathcal{M} \subset \mathbf{R}^N$ be compact, K-dimensional manifold. If Φ is an $M \times N$ random orthoprojector with $M = O(K \log(N) / \epsilon^2)$ then for every pair $x, y \in \mathcal{M}$ $1 - \epsilon \leq \frac{\|\Phi(x-y)\|}{\|x-y\|} \leq 1 + \epsilon$

Michael B. Wakin

University of Michigan

Advantages and applications

 Bounds are pessimistic, difficult to compute explicitly • Solution: start small, progressively acquire more measurements

Multiscale manifold navigation

- •rotations 2°, 4°, ..., 360°
- •binary random measurements
- •5 regularization kernels
- Estimate rotation using multiscale projections
- Identify most likely class using nearest-neighbor test

Classification with manifold learning

- 2 image classes
 - •disc or square of fixed radius
 - •unknown shift
- random measurements
- lower residual variance

Experiments

• 3 image classes imaged using single-pixel camera

• Training data coarsely sampled from the two manifolds • Append a new batch of data to each of the two training data sets, run ISOMAP, and classify according to which yields

