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Pressure Is on...

Increasing pressure on machine learning
algorithms to support

higher rates / resolution

larger numbers of sensors]

greater number of modalities

deluge of data




Models and conciseness

We often have models for our data
These models are usually concise

Data vector =z € RY

Can be described with K pieces of
information, K < N

- lies in a subspace

- lies in a union of subspaces
- lies on a manifold




Feature extraction and learning

We want a small set of features that contain
as much information as possible: y = $x

data —[ feature extraction }ﬁ{ learning ]—»classifier

data —[joint feature extraction / Iearning}— classifier

— joint feature extraction / learning is hard

— in some cases, feature extraction is an easy
way to exploit prior knowledge

— splitting the process into two steps may
actually help



Dimensionality reduction

e Nonlinear, adaptive
— manifold-learning
— learn a local set of features
— model = manifold

e Linear, adaptive
- PCA
- learn a fixed set of features
- model = subspace

e Linear, non-adaptive
— fix a subspace, independent of the data
- random projections
- model = ?77?



Johnson-Lindenstrauss Lemma

/For any set @ of points in R" and € € (0, 1),
w.h.p. a random M x N matrix ® will satsify

@r all u,v € Q, provided M = O(In(#(Q))/ez))

Key ingredients:
E(||®x]7) = [|lz[I7

2 2 2 _CMe
P(| [|®z||7 — [lzllix] > ellzllzy) < 2e™7°



Classification

e If our classes are separable in RY then
they should remain separable in R

- [Balcan, Blum, Vempala - 04, 05, 06]
— [Rahimi and Recht — NIPS 07]

e How many projections do we need?



Compressive sensing

-

“sparse signals can be recovered from a small
number of nonadaptive linear measurements”
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“Computing” random projections
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A/D conversion
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First iImage acquisition

N

© MIT Tech Review

ideal 20X 50x
256x256 pixels sub-Nyquist sub-Nyquist




Embedding a subspace

Effect of random projections on a subspace
— construct e-net of points on S5t : Q

— JL: union bound — isometry for all ¢ € Q
- extend to isometry for entire subspace
- @ should have O(N*) points = M = O(K In(N))




Embedding a union of subspaces

. N
e Take a union over all (,.) subspaces

e Random projections are (near) isometries
for the class of sparse signals

e Still only need M = O(K In(N))

K-dim subspaces



Embedding a manifold

Suppose K-dim manifold is compact, smooth
— construct a sampling of points on manifold

— construct a sampling of points from local
tangent spaces

- need O(N®) points = M = O(K In(N))
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Classification

e If our classes are separable in RY then
they should remain separable in R

- [Balcan, Blum, Vempala - 04, 05, 06]
— [Rahimi and Recht — NIPS 07]

e How many projections do we need?
— potentially many fewer than previously thought



Smashed filtering

e Many classification problems can be posed
as a '"nearest manifold” search
— classical matched filter
— object recognition
— speaker identification




Manifold learning
o ISOMAP

— uses pairwise distances between data points

/IfM > O(K In N/&%), then the ISOMAP residual\
variance estimate in the projected domain is
bounded by an additive error factor:
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Intrinsic dimension estimation

e Grassberger-Procaccia Algorithm for
estimation of intrinsic dimension

— also uses pairwise distances between data
points

GfM > O(K In N/§%), then the GP estimate in
the projected domain is bounded by a
multiplicative error factor:

. (1-8K < Ko < (148K

~

e Many more possibilities
- [Hegde - NIPS 07]



Conclusions

Random projections

— useful feature extraction technique when the
data obeys a simple model

- number of projections required does not grow
with size of the data set

— in some cases, can be obtained at almost zero
computational cost

— important baseline to compare against
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