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Pressure is on…

Increasing pressure on machine learning 
algorithms to support

higher rates / resolution

larger numbers of sensors

greater number of modalities

deluge of data



Models and conciseness

• We often have models for our data

• These models are usually concise

• Data vector 

• Can be described with    pieces of 
information,

– lies in a subspace

– lies in a union of subspaces

– lies on a manifold



Feature extraction and learning

We want a small set of features that contain 
as much information as possible: 

feature extraction learningdata classifier

joint feature extraction / learningdata classifier

– joint feature extraction / learning is hard

– in some cases, feature extraction is an easy 
way to exploit prior knowledge

– splitting the process into two steps may 
actually help



Dimensionality reduction

• Nonlinear, adaptive

– manifold-learning

– learn a local set of features 

– model = manifold

• Linear, adaptive

– PCA

– learn a fixed set of features

– model = subspace

• Linear, non-adaptive

– fix a subspace, independent of the data

– random projections

– model = ???



Johnson-Lindenstrauss Lemma

Key ingredients:



Classification

• If our classes are separable in    , then 
they should remain separable in 

– [Balcan, Blum, Vempala – 04, 05, 06]

– [Rahimi and Recht – NIPS 07]

• How many projections do we need?



Compressive sensing

one row 
of

project transmit/store

receive reconstruct

“sparse signals can be recovered from a small 

number of nonadaptive linear measurements”



“Computing” random projections
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random
pattern on
DMD array

single photon 
detector

image
reconstruction

A/D conversion



First image acquisition

ideal 
256x256 pixels
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20x
sub-Nyquist

50x
sub-Nyquist



Embedding a subspace

Effect of random projections on a subspace
– construct  -net of points on         : 

– JL: union bound     isometry for all

– extend to isometry for entire subspace

– should have           points



Embedding a union of subspaces

• Take a union over all      subspaces

• Random projections are (near) isometries 
for the class of sparse signals

• Still only need 

K-dim subspaces



Embedding a manifold

Suppose   -dim manifold is compact, smooth

– construct a sampling of points on manifold

– construct a sampling of points from local 
tangent spaces

– need           points  



Classification

• If our classes are separable in    , then 
they should remain separable in 

– [Balcan, Blum, Vempala – 04, 05, 06]

– [Rahimi and Recht – NIPS 07]

• How many projections do we need?

– potentially many fewer than previously thought



Smashed filtering

• Many classification problems can be posed 
as a “nearest manifold” search

– classical matched filter

– object recognition

– speaker identification

MJ

MJ



If                           , then the ISOMAP residual 
variance estimate in the projected domain is 
bounded by an additive error factor:

Manifold learning

• ISOMAP

– uses pairwise distances between data points

Full data (4096) M = 100 M = 50 M = 25



If                           , then the GP estimate in 
the projected domain is bounded by a
multiplicative error factor:

Intrinsic dimension estimation

• Grassberger-Procaccia Algorithm for                 
estimation of intrinsic dimension 

– also uses pairwise distances between data 
points

• Many more possibilities 

– [Hegde – NIPS 07]



Conclusions

Random projections

– useful feature extraction technique when the 
data obeys a simple model

– number of projections required does not grow 
with size of the data set

– in some cases, can be obtained at almost zero 
computational cost

– important baseline to compare against

dsp.rice.edu
dsp.rice.edu/cs


