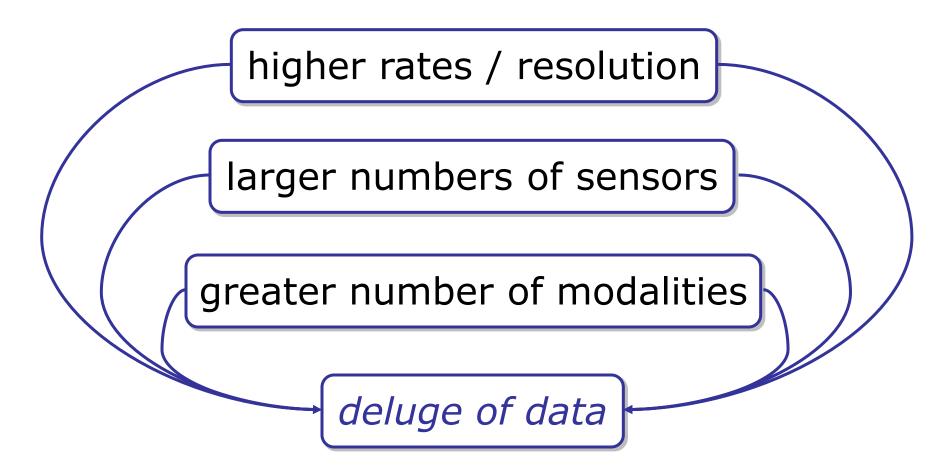
Efficient Machine Learning Using Random Projections

Chinmay Hegde Mark Davenport Richard Baraniuk

Michael Wakin

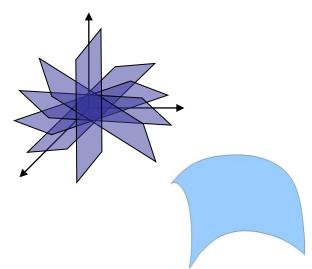
Pressure is on...

Increasing pressure on machine learning algorithms to support



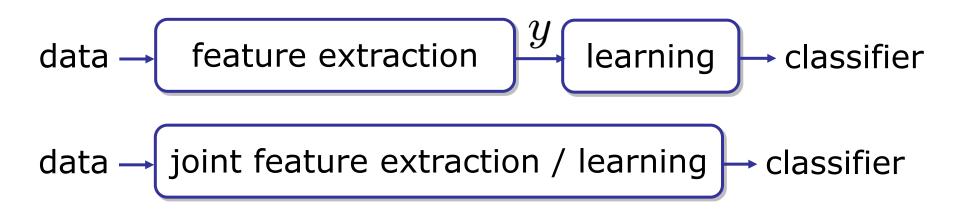
Models and conciseness

- We often have *models* for our data
- These models are usually *concise*
- Data vector $x \in \mathbf{R}^N$
- Can be described with K pieces of information, $K \ll N$
 - lies in a *subspace*
 - lies in a union of subspaces
 - lies on a *manifold*



Feature extraction and learning

We want a small set of features that contain as much information as possible: $y = \Phi x$



- joint feature extraction / learning is hard
- in some cases, feature extraction is an easy way to exploit prior knowledge
- splitting the process into two steps may actually help

Dimensionality reduction

- Nonlinear, adaptive
 - manifold-learning
 - learn a local set of features
 - model = manifold
- Linear, adaptive
 - PCA
 - learn a fixed set of features
 - model = subspace
- Linear, non-adaptive
 - fix a subspace, independent of the data
 - random projections
 - model = ???

Johnson-Lindenstrauss Lemma

For any set Q of points in \mathbb{R}^N and $\epsilon \in (0, 1)$, w.h.p. a random $M \times N$ matrix Φ will satsify

$$(1-\epsilon) \le \frac{\|\Phi(u-v)\|^2}{\|u-v\|^2} \le (1+\epsilon)$$

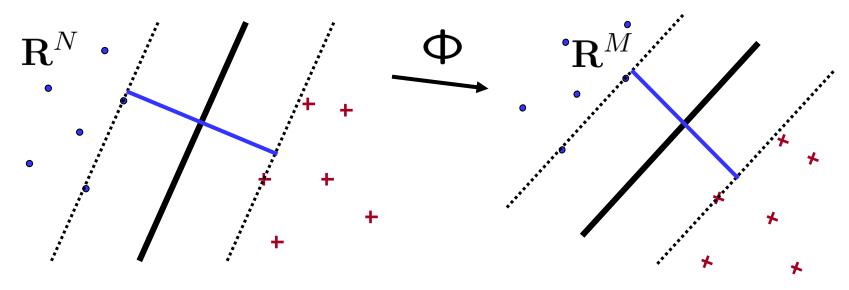
for all $u, v \in Q$, provided $M = O(\ln(\#(Q))/\epsilon^2)$.

Key ingredients:

$$\begin{split} \mathbf{E}(\|\Phi x\|_{\ell_2^M}^2) &= \|x\|_{\ell_2^N}^2\\ \mathbf{P}(\|\|\Phi x\|_{\ell_2^M}^2 - \|x\|_{\ell_2^N}^2) \geq \epsilon \|x\|_{\ell_2^N}^2) \leq 2e^{-CM\epsilon^2} \end{split}$$

Classification

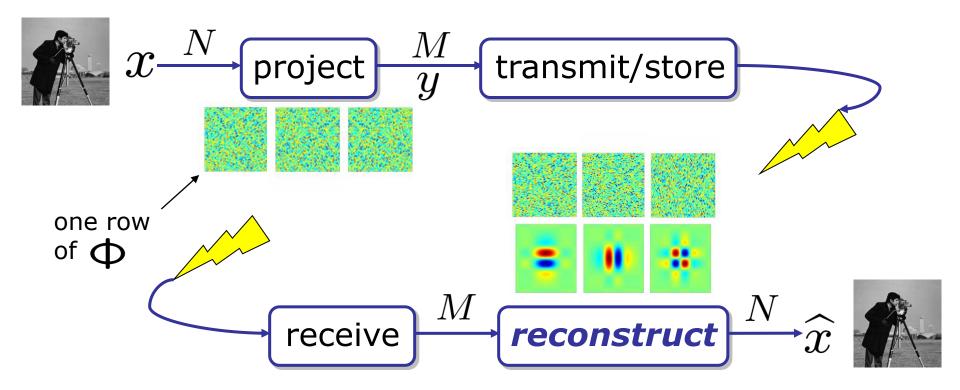
• If our classes are separable in \mathbf{R}^N , then they should remain separable in \mathbf{R}^M



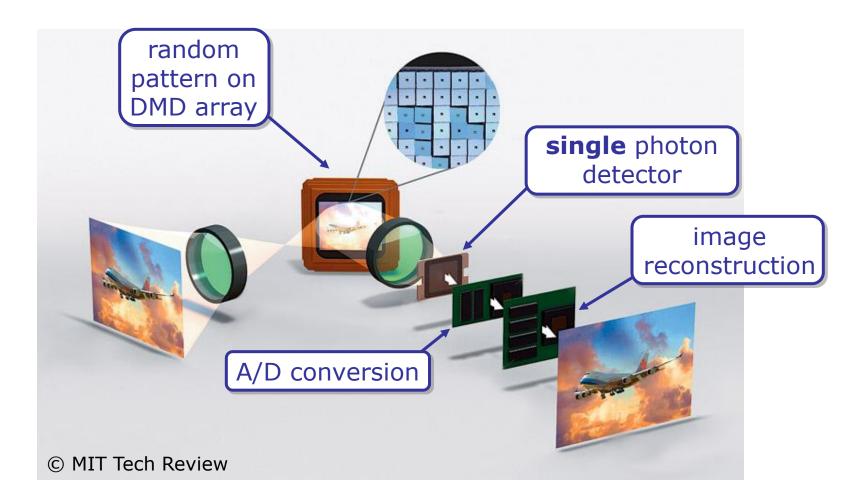
- [Balcan, Blum, Vempala 04, 05, 06]
- [Rahimi and Recht NIPS 07]
- How many projections do we need?

Compressive sensing

"*sparse* signals can be recovered from a small number of *nonadaptive linear measurements*"



"Computing" random projections



First image acquisition

ideal 256x256 pixels

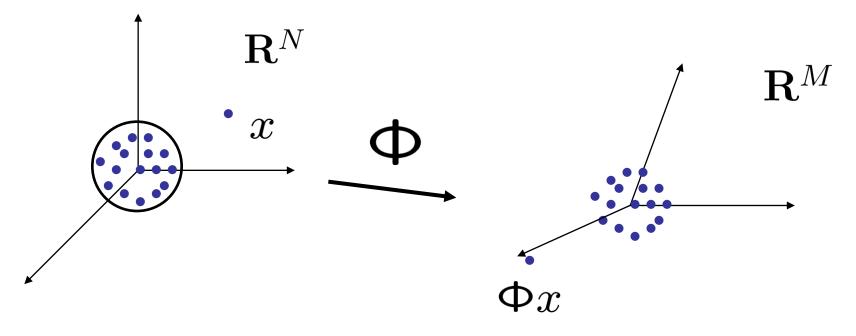
20x sub-Nyquist

50x sub-Nyquist

Embedding a subspace

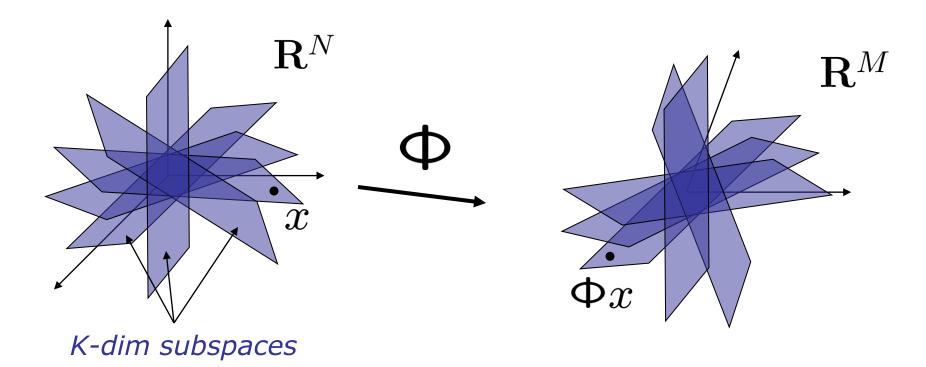
Effect of random projections on a subspace – construct ϵ -net of points on S^{K-1} : Q

- JL: union bound \rightarrow isometry for all $q \in Q$
- extend to isometry for entire subspace
- Q should have $O(N^K)$ points $\rightarrow M = O(K \ln(N))$



Embedding a union of subspaces

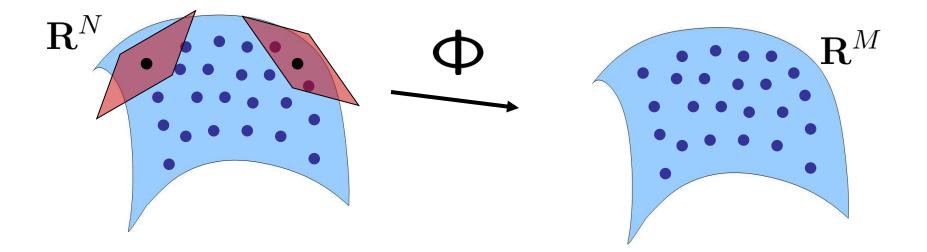
- Take a union over all $\binom{N}{K}$ subspaces
- Random projections are (near) isometries for the class of sparse signals
- Still only need $M = O(K \ln(N))$



Embedding a manifold

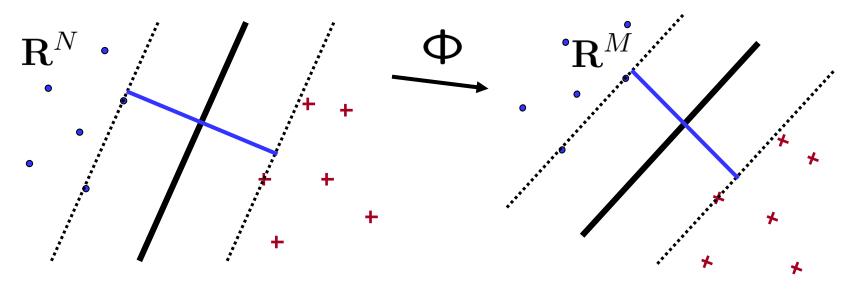
Suppose *K*-dim manifold is *compact, smooth*

- construct a sampling of points on manifold
- construct a sampling of points from local tangent spaces
- need $O(N^K)$ points $\rightarrow M = O(K \ln(N))$



Classification

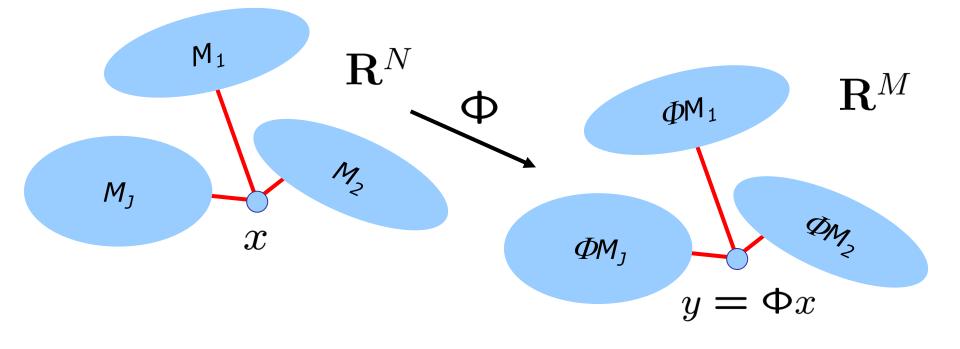
• If our classes are separable in \mathbf{R}^N , then they should remain separable in \mathbf{R}^M



- [Balcan, Blum, Vempala 04, 05, 06]
- [Rahimi and Recht NIPS 07]
- How many projections do we need?
 - potentially many fewer than previously thought

Smashed filtering

- Many classification problems can be posed as a "nearest manifold" search
 - classical matched filter
 - object recognition
 - speaker identification



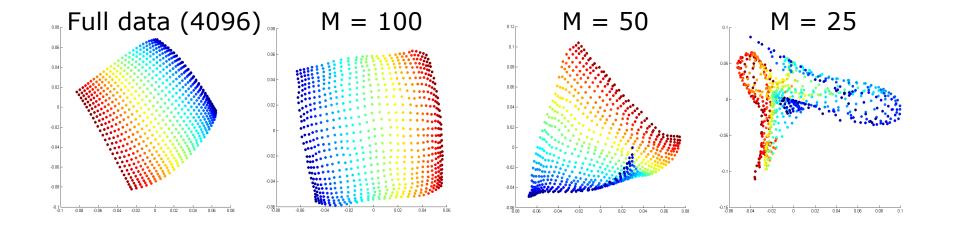
Manifold learning

• ISOMAP

- uses pairwise distances between data points

If $M > O(K \ln N/\delta^2)$, then the ISOMAP residual variance estimate in the projected domain is bounded by an additive error factor:

 $R_{\Phi} < R + C\delta$



Intrinsic dimension estimation

- Grassberger-Procaccia Algorithm for estimation of intrinsic dimension
 - also uses pairwise distances between data points

If $M > O(K \ln N/\delta^2)$, then the GP estimate in the projected domain is bounded by a multiplicative error factor:

$$(1-\delta)\bar{K} < K_{\Phi} < (1+\delta)\bar{K}$$

Many more possibilities
– [Hegde – NIPS 07]

Conclusions

Random projections

- useful feature extraction technique when the data obeys a *simple model*
- number of projections required *does not* grow with size of the data set
- in some cases, can be obtained at almost zero computational cost
- important baseline to compare against

dsp.rice.edu dsp.rice.edu/cs