

Mark Davenport and Richard Baraniuk

Sparse Signals

Sparse: $K \ll N$ nonzero coefficients **Compressible**: $K \ll N$ important coefficients

Unions of Subspaces

- Sparse signal ≠ subspaces
 - subspace model: linear
 - sparse model: nonlinear
 - sparse model = union of $\binom{N}{K}$ subspaces

Sparsity vs Manifolds

Does the set of sparse signals form a manifold?

- Union of multiple manifolds
- Same lessons apply we can still exploit the low-dimensional structure

Geodesic Paths on a Manifold

- How is manifold structure exploited in practice?
- $\phi:[0,1]\to\mathcal{X}$

$$\Phi_{\mathcal{X}}(x,y) = \{\phi(t) : \phi(0) = x, \phi(1) = y, \phi(t) \in \mathcal{X}\}$$

Geodesic path $\gamma = \underset{\phi \in \Phi_{\mathcal{X}}(x,y)}{\operatorname{arg\,inf}} L(\phi)$

Geodesic distance

 $d_{\mathcal{X}}(x,y) = L(\gamma)$

Sparse Geodesic Paths

$$\gamma = \underset{\phi \in \Phi_{\Sigma_K}(x,y)}{\operatorname{arg\,inf}} L(\phi)$$

$$d_{\Sigma_K}(x,y) = L(\gamma)$$

• Assumptions

$$-\Psi = I$$

- supp $(x) \cap$ supp $(y) = \emptyset$
- $|$ supp $(x)| = |$ supp $(y)| = K$

Necessary Conditions

Three cases:

• $i \notin \operatorname{supp}(x) \cup \operatorname{supp}(y) \implies \gamma_i(t) = 0$ for all $t \in [0, 1]$

Support Matching

• Given a candidate $\gamma(t)$, we can define a *matching* \mathcal{M} between the entries of x and y

• We allow $(i, j) \in \mathcal{M}$ if and only if $t_i \leq r_j$

Geodesic "Unfolding"

 $(i_1, j_1) \in \mathcal{M}$

• Repeating for every $(i_k, j_k) \in \mathcal{M}$, we can map any candidate geodesic $\gamma(t)$ into a path in \mathbb{R}^K from $-|\gamma_I(0)|$ to $|\gamma_J(1)|$

Sketch of Derivation

- 1. Any potential geodesic path is compatible with at least one matching
- Given any potential geodesic path, its length is equal to the length of the corresponding "unfolded" path
- 3. Given any matching, the shortest path in the "unfolded" space is a straight line
- 4. This line defines a valid geodesic path

Matching Dependent Geodesic

• Given a matching \mathcal{M} , the shortest path compatible with this matching has length

$$\sqrt{\sum_{k=1}^{K} (|x_{i_k}| + |y_{j_k}|)^2}$$

• Finding the shortest path is equivalent to finding the best matching

Optimal Matching

• We want to minimize

$$\sum_{k=1}^{K} \left(|x_{i_k}| + |y_{j_k}| \right)^2 = ||x - y||_2^2 + 2\sum_{k=1}^{K} |x_{i_k}| |y_{j_k}|$$

• Set $|x_{i_1}| \le |x_{i_2}| \le \dots \le |x_{i_K}|$ $|y_{j_1}| \ge |y_{j_2}| \ge \dots \ge |y_{j_K}|$

Observations

 Attempts to equalize the value of each term in the sum

$$d_{\Sigma_K}(x,y) = \sqrt{\|x-y\|_2^2 + 2\sum_{k=1}^K |x_{i_k}| |y_{j_k}|}$$

• Assume $x_{i_k} = C_x$ and $y_{j_k} = C_y$ $\sum_{k=1}^{K} |x_{i_k}| |y_{j_k}| = KC_x C_y = ||x||_2 ||y||_2$

$$||x - y||_2 \le d_{\Sigma_K}(x, y) \le ||x||_2 + ||y||_2$$

Example

 $d_{\Sigma_K}(x, x+n) = \|n\|_2$

 $d_{\Sigma_K}(x, x+n) > ||n||_2$

10 dB

20 dB SNR

30 dB

What is it good for?

- Incorporating prior knowledge
 - use geodesic distance as input to kNN, SVM, or other kernel-based learning algorithm
- Semi-supervised learning
 - combine with dictionary learning algorithms such as K-SVD [Aharon 2006]
- Signal morphing/interpolation
- "Absolutely nothin'!"?

[Starr 1970]

Extensions

• Structured sparsity

- Compressible data
 - truncate to enforce sparsity
 - geodesic distance on ℓ_p and/or $w\ell_p$ balls

Conclusions

- For the simple sparse setting
 - analytic formula available
 - doesn't differ much from Euclidean distance
- Important to incorporate additional structure/models
 - still possible to derive a formula?
 - can it be computed efficiently?
- Promising applications?

<u>dsp.rice.edu</u>