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Decreasing Complexity of Inference
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Low-Dimensional Models
Low-Complexity Inference 

with Low-Dimensional Models

Low-Complexity InferenceOverview

Data deluge carries technological challenges: 

• acquire, store, and process huge amounts of high-dimensional data

Reduce these burdens by reducing the dimensionality of the data

• capture key signal information in a reduced set of measurements

• later recover signal or statistics of interest

Why is dimensionality reduction even possible?

• signals and data may have low-dimensional structure,

• statistics of interest may involve low-complexity inference,

• or both 

Several precedents for using random, nonadaptive, linear 
measurements: 

• estimating approximate nearest-neighbors

• estimating statistics of large data sets

• compressed sensing

Common link for success in these applications is a concentration of measure phenomenon:

• let x RN and let : RN × RM be a random matrix with iid Gaussian entries; then

• other distributions for  also possible

This property has substantial implications in a number of settings

• compressive hardware under development

Sparse Signal Models

Compressed Sensing takes advantage of the

low-dimensional structure of sparse signals

Concentration of measure allows embedding

Manifold Signal Models

Low-dimensional parametric structure

Concentration of measure

Estimation, Detection, and Classification

Combine low-complexity inference with sparse models

IDEA – Incoherent Estimation and Detection Algorithm

• greedy algorithm for obtaining a partial reconstruction

• estimate and cancel sparse/compressible noise

• threshold recovered coefficients 

Case study: Wideband chirps in narrowband noise

• weak signal of interest in heavy, narrowband noise

• can detect using 3x fewer measurements
compared to greedy reconstruction

Manifold Learning

Random projections preserve key manifold properties

• distances (ambient & geodesic) between points

• dimension, volume, and topology of the manifold

• lengths and curvature of paths on the manifold

Learn these features from sampled, projected data in RM

Estimation

Suppose we want to estimate         from

With probability at least         , 

where                             .

Detection

Suppose we want to determine between

Neyman-Pearson optimal detector is the

compressive matched filter , with ROC

Classification

More generally, suppose we want to

distinguish between s1, s2, s3, …
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Signal recovery

Signal recovery through      minimization

Distances preserved by
concentration of measure 
(Johnson-Lindenstrauss lemma)
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