LEARNING MINIMUM VOLUME SETS WITH **SUPPORT VECTOR MACHINES**

Rice University Department of Electrical and Computer Engineering

Mark A. Davenport, Richard G. Baraniuk

Clayton D. Scott

University of Michigan Department of Electrical Engineering and Computer Science

Overview

Use support vector machines to estimate *minimum volume sets (MV-sets)*

anomaly detection

clustering

Support Vector Machines

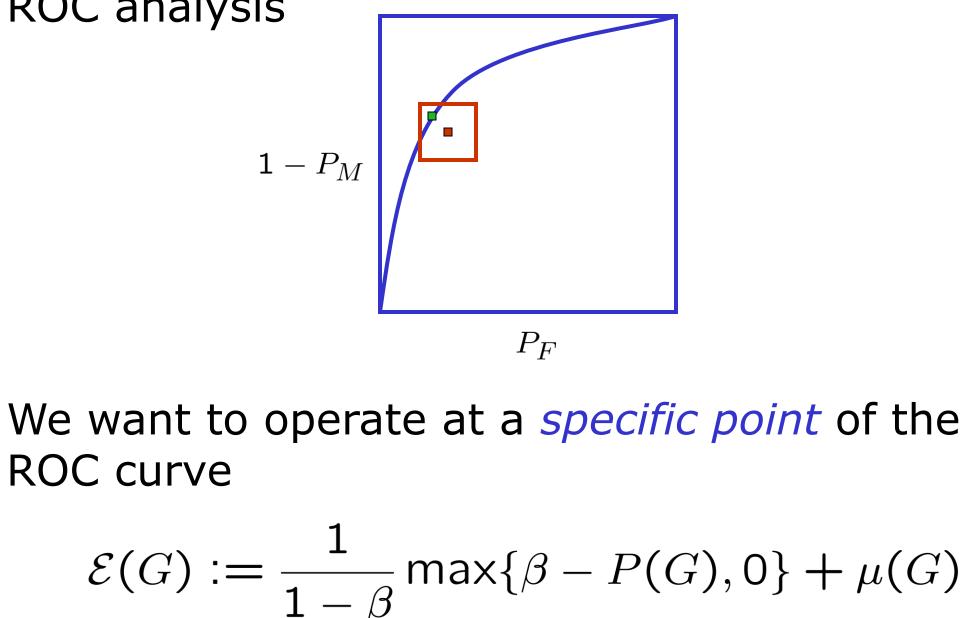
Method for learning classifiers from training data

- Use "kernel-trick"
- Maximize the "margin"

Measuring Performance

Algorithms for MV/level set estimation of NP classification are typically analyzed using

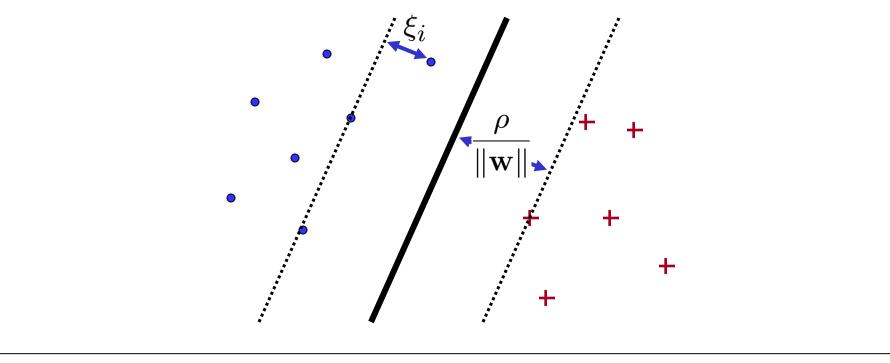
ROC analysis



Key idea: reduce MV-set estimation to Neyman-Pearson classification

- treat MV-set estimation (one-class problem) as a *two-class* problem like classification
- draw second class from *uniform* distribution

 $\min_{\mathbf{w},b,\xi,\rho} \quad \frac{1}{2} \|\mathbf{w}\|^2 - \nu\rho + \frac{1}{n} \sum_{i=1}^n \xi_i \qquad \nu \in [0,1]$ s.t. $(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) y_i \ge \rho - \xi_i$



Minimum Volume Sets

Given

- Probability measure P
- Reference measure μ (typically Lebesgue)
- Target mass β

The *minimum volume set* is

 $G^*_{\beta} = \arg \min\{\mu(G) : P(G) \ge \beta, G \text{ measurable}\}$

Neyman-Pearson SVMs

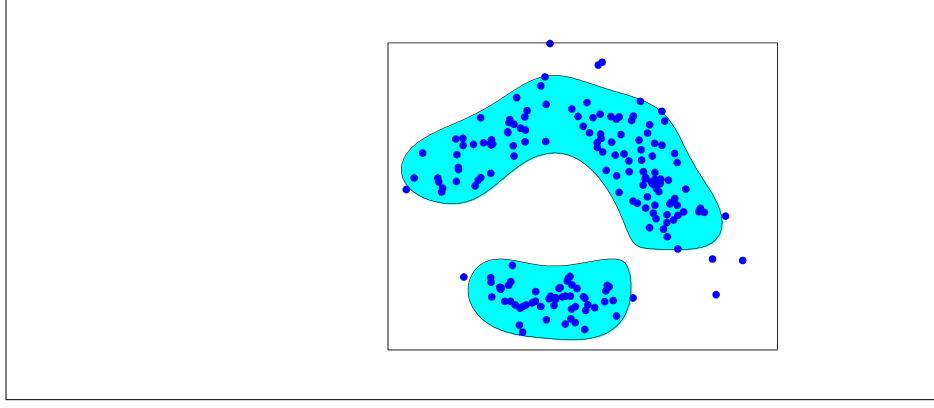
Consider *cost-sensitive* SVM

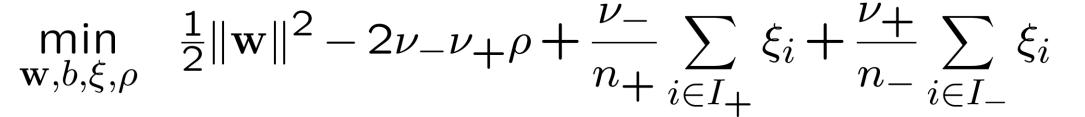
- Introduce class-specific weights
- Adjust weights to achieve desired error rates

Relies on accurate error estimation

cross-validation

Results: MV-set	t Estim	atior	
Company with			$\mathcal{E}_{\mu}(G)$
Compare with		OC-SVM	1.36
one-class SVM	hanana	NP-IND	0.53
	banana	NP-THIN	0.47
Modified LIBSVM software		NP-MAN	0.44
		OC-SVM	0.55
	hranat annar	NP-IND	0.29
	breast-cancer	NP-THIN	1.75
		NP-MAN	0.06
Highlights:	heart	OC-SVM	0.63
 manifold sampling 		NP-IND	0.43
		NP-THIN	1.26
performs best		NP-MAN	0.16
e two class mothods	thyroid	OC-SVM	0.77
 two-class methods 		NP-IND	0.63
more reliable		NP-THIN	0.79
, impost of discrete		NP-MAN	0.7
 impact of discrete data 	ringnorm	OC-SVM	0.11
		NP-IND	0.17
		NP-THIN	0.11
		NP-MAN	0.06





s.t. $(\langle \mathbf{w}, \mathbf{X}_i \rangle + b) Y_i \ge \rho - \xi_i$

 $(
u_+,
u_-)\in [0,1]^2$

Ρ	CHUIIIS	DCSC	
• tv	wo-class	methods	

Neyman-Pearson Classification

Given

- Probability measures Q_+ and Q_-
- Target power α

Let $P_F(f) = Q_-(\{x : f(x) = +1\})$ $P_M(f) = Q_+(\{x : f(x) = -1\})$

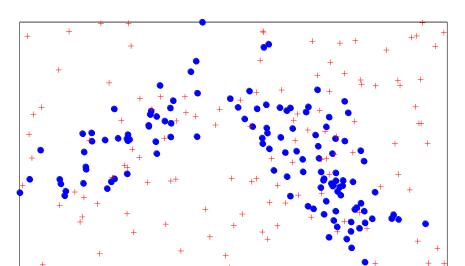
The Neyman-Pearson classifier is

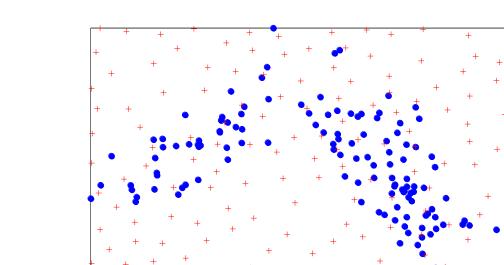
 $f_{\alpha}^* = \arg \min\{P_M(f) : P_F(f) \le \alpha\}$

Uniform Data: Thinning

In high dimensions we must confront the "curse of dimensionality"

One option is *thinning* the data to ensure a large distance between any pair of points • results in an approximate "packing set"





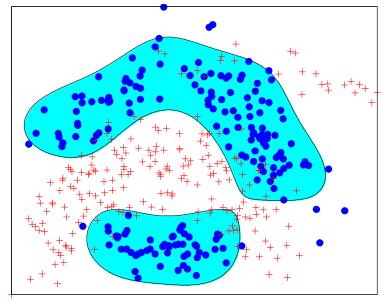
Results: Anomaly Detection

Test validity of uniform prior

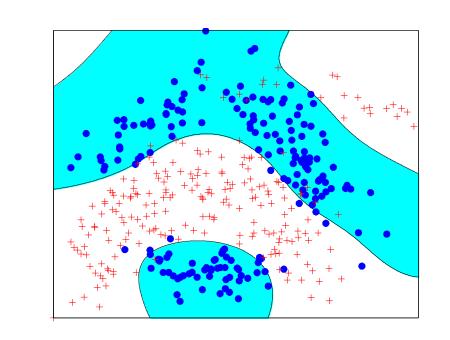
Compare

MV-set (one class)

• NP-classifier (both classes)



		$\mathcal{E}_+(G)$
banana	without	0.29
banana	with	0.24
breast-cancer	without	0.83
	with	0.99
haart	without	0.76
heart	with	0.50
thuraid	without	0.44
thyroid	with	0.22



ringnorm	without	0.015
	with	0.021

Reduction to Neyman-Pearson Classification

Any technique for estimating an NP classifier can be adapted to estimate an MV-set

Set $Q_{-} = 1 - P$ $Q_+ = \mu$ $\alpha = 1 - \beta$

Then, if f_{α}^* is the optimal NP classifier,

 $G_{\beta}^* = \{x : f_{\alpha}^* = -1\}$

Challenge: we only have samples from *P*

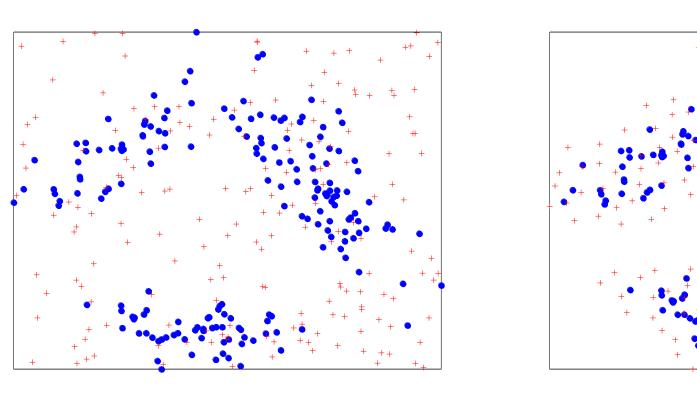
 \implies we can *sample* from μ

Uniform Data: Manifold Sampling

Thinning does not directly overcome the "vastness of space" in high dimensions

What if our data lies on a *manifold*?

- adapt to this structure
- do not waste samples



Conclusions

Minimum volume sets are an effective way to approach anomaly detection

We can accurately estimate minimum volume sets using Neyman-Pearson SVMs

The procedure used for generating "uniform" samples can significantly impact performance

Our approach tends to perform

- better than the one-class SVM
- often nearly as well the NP classifier trained using *both* classes

dsp.rice.edu