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Compressive Sensing 

Replace samples with general linear measurements  
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What are the pros and cons of “CS” in practice? 
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Core Theoretical Challenges 

• How should we design the matrix     so that      is as small 

as possible? 

 

 

 

 

 

 

 

 

• How can we recover              from the measurements    ? 



Answers 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 

 

 

• Lots and lots of algorithms 



Compressive Sensing: An Apology 

Objection 1: CS is discrete, finite-dimensional 

Objection 2: Impact of noise 

Objection 3: Impact of quantization 



Analog Sensing is Matrix Multiplication 

If         is bandlimited, 
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Compressive Sensing: An Apology 

Objection 1: CS is discrete, finite-dimensional 

Objection 2: Impact of noise 

Objection 3: Impact of quantization 



Recovery from Noisy Measurements 

  Given                    or                      , 

find     

• Optimization-based methods 

– basis pursuit, basis pursuit de-noising, Dantzig selector 

 

 

 

 
 

• Greedy/Iterative algorithms 

– OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, … 



Stable Signal Recovery 

Suppose that we observe                                         and that     satisfies the 

RIP of order     .  

 

 

 

 

Typical (worst-case) guarantee 

 

 

 

Even if                     is provided by an oracle, the error can 

still be as large as                                       . 

 



Stable Signal Recovery: Part II 

Suppose now that     satisfies 

 

 

 
 

In this case our guarantee becomes  

 

 

 

 
 

  Unit-norm rows 

 



Expected Performance 

• Worst-case bounds can be pessimistic 
 

• What about the average error? 

–  assume     is white noise with variance 

 

 

– for oracle-assisted estimator     

 

 
 

– if    is Gaussian, then for    -minimization 



White Signal Noise 

Suppose     has orthogonal rows with norm equal to       .   

If    is white noise with variance     , then       is white noise 

with variance       . 

 

 

 

 

 

 

What if our signal     is contaminated with noise? 

3dB loss per octave  
of subsampling 
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Noise Folding 

[D, Laska, Treichler, and Baraniuk - 2011] 



Can We Do Better? 

• Better choice of    ? 

• Better recovery algorithm? 

 

If we knew the support of    a priori, then we could achieve  

 

 

 

Is there any way to match this performance without knowing 

the support of    in advance? 



No! 

[Candès and D - 2011] 

Theorem:   

If                   with                      , then 

 

 
 

If                      with                       , then 

See also: Raskutti, Wainwright, and Yu (2009) 

     Ye and Zhang (2010) 



Proof Recipe 

Ingredients  [Makes           servings] 

• Lemma 1: Suppose     is a set of    -sparse points such that 

       for all                 .   

          Then                                                             . 
 

• Lemma 2: There exists a set     of    -sparse points such that 

•   

•                         for all  

•                                         for some 

 

Instructions 

Combine ingredients and add a dash of linear algebra.       



Proof Outline 



Recall: Lemma 2 

Lemma 2: There exists a set     of    -sparse points such that 

•   

•                         for all  

•                                         for some 

 

Strategy 

 Construct     by sampling (with replacement) from  

 

 
 

 Repeat for                          iterations. 
 

With probability       , the remaining properties are satisfied. 
 

Key: Matrix Bernstein Inequality  [Ahlswede and Winter, 2002]   

 



Compressive Sensing: An Apology 

Objection 1: CS is discrete, finite-dimensional 

Objection 2: Impact of signal noise 

Objection 3: Impact of quantization 



Signal Recovery with Quantization 

• Finite-range quantization leads to saturation, i.e., 

unbounded errors on the largest measurements 
 

• Quantization noise changes as we change the sampling rate 



Saturation Strategies 

• Rejection: Ignore saturated measurements 

 

 

 

 

 
 

• Consistency: Retain saturated measurements. 

Use them only as inequality constraints on the recovered 

signal 

 

• If the rejection approach works, the consistency approach 

should automatically do better 



• The RIP is not sufficient for the rejection approach 
 

• Example:           

– perfect isometry 

– every measurement must be kept 
 

• We would like to be able to say that any submatrix of     

with sufficiently many rows will still satisfy the RIP    

 

 

 

 

• Strong, adversarial form of “democracy” 

Rejection and Democracy 



• Step 1: Concatenate the identity to 

 

 

 

 

 

 

 

 

Sketch of Proof 

Theorem:   

If    is a sub-Gaussian matrix with 

 

 

then         satisfies the RIP of order     with 

probability at least                 .  

[D, Laska, Boufounos, and Baraniuk - 2009] 



• Step 2: Combine with the “interference cancellation” 
lemma 

Sketch of Proof 

• The fact that          satisfies the RIP implies that if we take       

    extra measurements,  then we can delete  

arbitrary rows of     and retain the RIP 
 

• This is a strong adversarial notion of democracy 

 
[D, Laska, Boufounos, and Baraniuk - 2009] 



Rejection In Practice 
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Benefits of Saturation 

Saturation 

Rate 

saturation 

rate 

[Laska, Boufounos, D, and Baraniuk - 2011] 



Benefits of Saturation 

Saturation 
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saturation 
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gain 

[Laska, Boufounos, D, and Baraniuk - 2011] 



Potential for SNR Improvement? 

By sampling at a lower rate, we can quantize to a higher bit-

depth, allowing for potential gains 

[Le et al. - 2005] 



Empirical SNR Improvement 

[D, Laska, Treichler, and Baraniuk - 2011] 



Conclusions 

Cons 

• signal noise can potentially be a problem 

• nonadaptivity entails a tremendous SNR loss 

• if you have signal noise or can get benefits from averaging, 

taking fewer measurements might be a really bad idea! 

 

Pros  

• if quantization noise dominates the error, CS can 

potentially lead to big improvements 

• novel strategies for handling saturation errors 

• low-bit “CS” might be useful even when      is relatively 

large 


