The Pros and Cons of Compressive Sensing

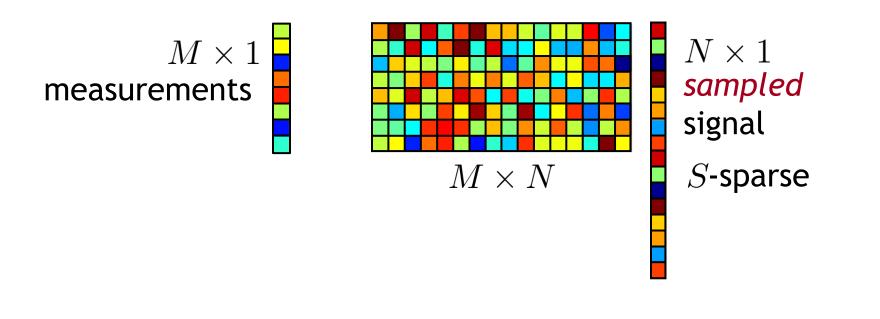
Mark A. Davenport

Stanford University Department of Statistics

Compressive Sensing

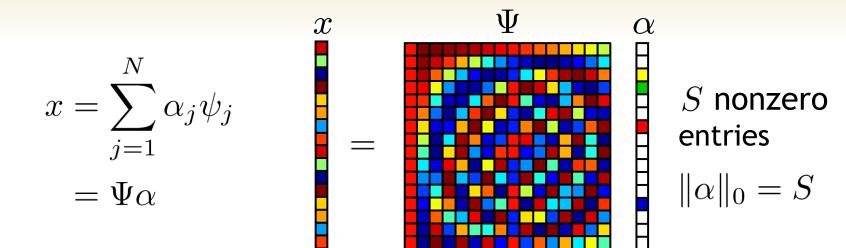
Replace samples with general *linear measurements*

$$y = \Phi x$$

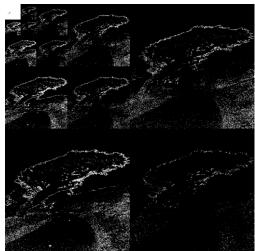


What are the pros and cons of "CS" in practice?

Review: Sparsity

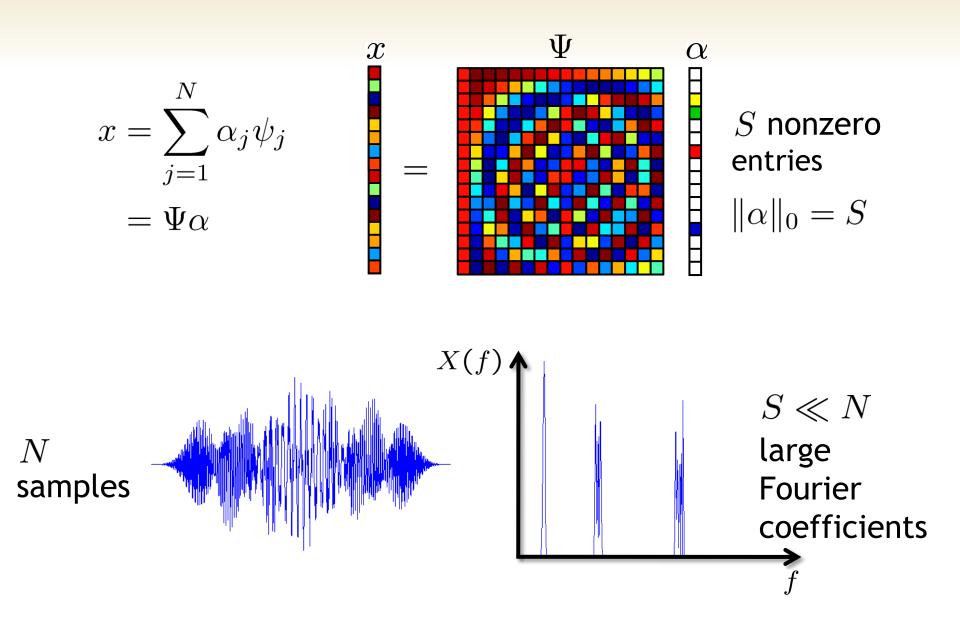


N pixels

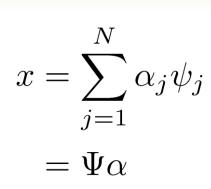


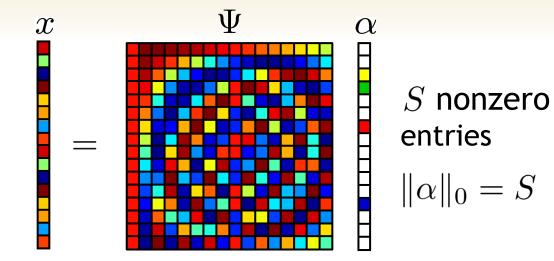
$S \ll N$ large wavelet coefficients

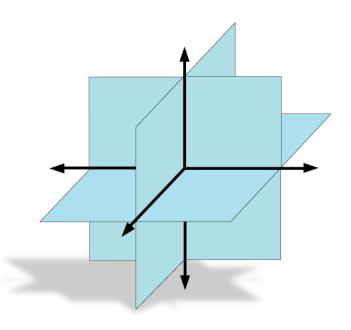
Review: Sparsity



Review: Sparsity

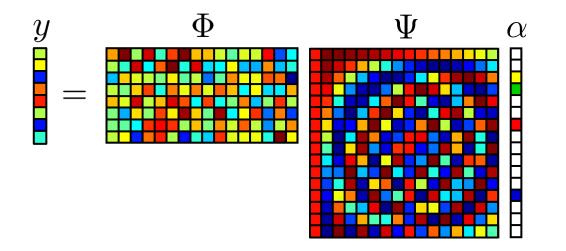






Core Theoretical Challenges

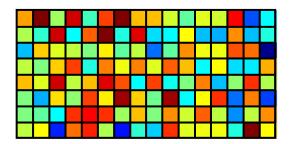
• How should we design the matrix Φ so that M is as small as possible?



• How can we recover $x = \Psi \alpha$ from the measurements y ?

Answers

- Choose a *random matrix*
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a "random subspace"



$$M = O(S \log(N/S)) \ll N$$

• Lots and lots of algorithms

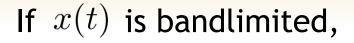
Compressive Sensing: An Apology

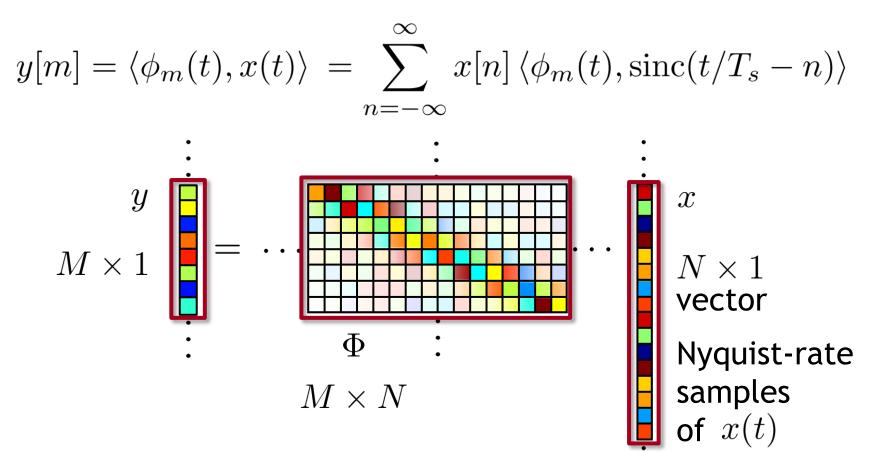
Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of noise

Objection 3: Impact of quantization

Analog Sensing is Matrix Multiplication





Compressive Sensing: An Apology

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of noise

Objection 3: Impact of quantization

Recovery from Noisy Measurements

Given
$$y = \Phi x + e$$
 or $y = \Phi(x + n)$,
find x

- Optimization-based methods
 - basis pursuit, basis pursuit de-noising, Dantzig selector

$$\widehat{x} = \underset{x \in \mathbb{R}^{N}}{\arg\min} \|x\|_{1}$$

s.t.
$$\|y - \Phi x\|_{2} \le \epsilon$$

- Greedy/Iterative algorithms
 - OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...

Stable Signal Recovery

Suppose that we observe $y = \Phi x + e$ and that Φ satisfies the RIP of order 2S.

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2 \qquad \|x\|_0 \le 2S$$

Typical (worst-case) guarantee

$$\|\widehat{x} - x\|_2^2 \le C \|e\|_2^2$$

Even if $\Lambda = \operatorname{supp}(x)$ is provided by an oracle, the error can still be as large as $\|\widehat{x} - x\|_2^2 = \|e\|_2^2/(1-\delta)$.

Stable Signal Recovery: Part II

Suppose now that Φ satisfies

$$A(1-\delta)\|x\|_{2}^{2} \leq \|\Phi x\|_{2}^{2} \leq A(1+\delta)\|x\|_{2}^{2} \qquad \|x\|_{0} \leq 2S$$

In this case our guarantee becomes

$$\|\widehat{x} - x\|_2^2 \le \frac{C}{A} \|e\|_2^2$$

Unit-norm rows $\|\widehat{x} - x\|_2^2 \leq C \frac{N}{M} \|e\|_2^2$

Expected Performance

- Worst-case bounds can be pessimistic
- What about the *average* error?
 - assume e is white noise with variance σ^2

 $\mathbb{E}\left(\|e\|_2^2\right) = M\sigma^2$

- for oracle-assisted estimator

$$\mathbb{E}\left(\|\widehat{x} - x\|_2^2\right) \le \frac{S\sigma^2}{A(1-\delta)}$$

- if e is Gaussian, then for ℓ_1 -minimization

$$\mathbb{E}\left(\|\widehat{x} - x\|_{2}^{2}\right) \leq \frac{C'}{A}S\sigma^{2}\log N$$

White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n) = \Phi x + \Phi n$$

Suppose Φ has orthogonal rows with norm equal to \sqrt{B} . If n is white noise with variance σ^2 , then Φn is white noise with variance $B\sigma^2$.

$$\mathbb{E}\left[\|\widehat{x} - x\|_2^2\right] \le C' \frac{B}{A} S \sigma^2 \log N$$

 $SNR = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right) \longrightarrow \begin{array}{c} \text{3dB loss per octave} \\ \text{of subsampling} \end{array}$

White Signal Noise

What if our signal x is contaminated with noise?

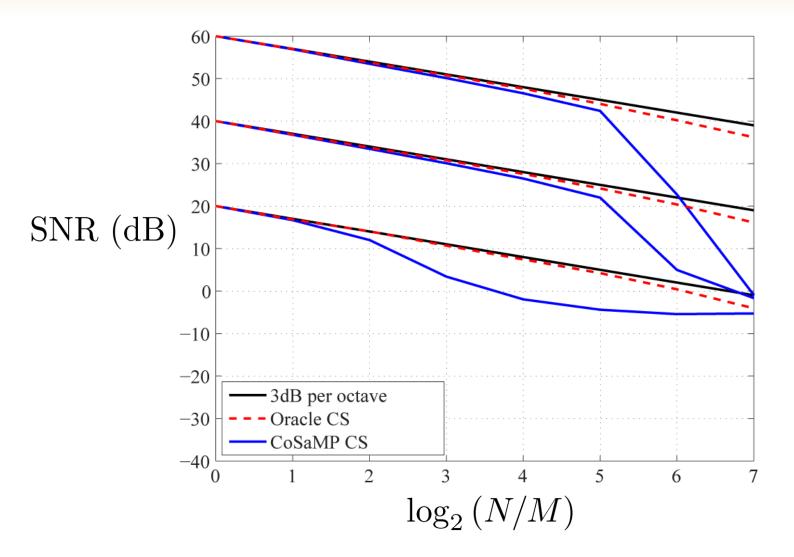
$$y = \Phi(x+n) = \Phi x + \Phi n$$

Suppose Φ has orthogonal rows with norm equal to \sqrt{B} . If n is white noise with variance σ^2 , then Φn is white noise with variance $B\sigma^2$.

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \leq C' \frac{N}{M} S \sigma^{2} \log N$$

 $SNR = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right) \longrightarrow \begin{array}{c} \text{3dB loss per octave} \\ \text{of subsampling} \end{array}$

Noise Folding



[D, Laska, Treichler, and Baraniuk - 2011]

Can We Do Better?

- Better choice of Φ ?
- Better recovery algorithm?

If we knew the support of x *a priori*, then we could achieve

$$\mathbb{E}\left[\|\widehat{x} - x\|_2^2\right] \approx \frac{S}{M} S\sigma^2 \ll C' \frac{N}{M} S\sigma^2 \log N$$

Is there any way to match this performance without knowing the support of x in advance?

$$R^*_{\mathrm{mm}}(\Phi) = \inf_{\widehat{x}} \sup_{\|x\|_0 \le S} \mathbb{E}\left[\|\widehat{x}(\Phi x + e) - x\|_2^2\right]$$

No!

Theorem:
If
$$y = \Phi x + e$$
 with $e \sim \mathcal{N}(0, \sigma^2 I)$, then
 $R_{mm}^*(\Phi) \ge C \frac{N}{\|\Phi\|_F^2} S \sigma^2 \log(N/S)$.
If $y = \Phi(x+n)$ with $n \sim \mathcal{N}(0, \sigma^2 I)$, then
 $R_{mm}^*(\Phi) \ge C \frac{N}{M} S \sigma^2 \log(N/S)$.

$$\Phi = U\Sigma V^* \quad y' = \Sigma^{-1} U^* y = V^* x + V^* n \quad \|V^*\|_F^2 = M$$

See also: Raskutti, Wainwright, and Yu (2009) Ye and Zhang (2010)

[Candès and D - 2011]

Proof Recipe

Ingredients [Makes $\sigma^2 = 1$ servings]

- Lemma 1: Suppose \mathcal{X} is a set of S-sparse points such that $\|x_i x_j\|_2^2 \ge 8R_{\min}^*(\Phi)$ for all $x_i, x_j \in \mathcal{X}$. Then $\frac{1}{2} \log |\mathcal{X}| - 1 \le \frac{1}{2|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2$.
- Lemma 2: There exists a set \mathcal{X} of S-sparse points such that

$$\begin{aligned} \bullet & |\mathcal{X}| = (N/S)^{S/4} \\ \bullet & \|x_i - x_j\|_2 \geq \frac{1}{2} \text{ for all } x_i, x_j \in \mathcal{X} \\ \bullet & \|\frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N}I\| \leq \frac{\beta}{N} \text{ for some } \beta > 0 \end{aligned}$$

Instructions

Combine ingredients and add a dash of linear algebra.

Proof Outline

$$\mu = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} \quad Q = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} x_{i}^{*}$$

 $\frac{S}{4} \log(N/S) - 2 \le \frac{1}{|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2$ $= \operatorname{Tr}\left(\Phi^*\Phi\left(\frac{1}{|\mathcal{X}|^2}\sum_{i,j}(x_i - x_j)(x_i - x_j)^*\right)\right)$ $= \operatorname{Tr} \left(\Phi^* \Phi \left(2(Q - \mu \mu^*) \right) \right)$ $\leq 2 \operatorname{Tr} (\Phi^* \Phi Q)$ $\leq 2 \operatorname{Tr} (\Phi^* \Phi) \| Q \|$ $< 2 \|\Phi\|_{F}^{2} \cdot 16 R_{mm}^{*}(\Phi)(1+\beta)$ $R_{\rm mm}^*(\Phi) \ge \frac{S \log(N/S)}{128(1+\beta) \|\Phi\|^2}$

Recall: Lemma 2

Lemma 2: There exists a set \mathcal{X} of S-sparse points such that

•
$$|\mathcal{X}| = (N/S)^{S/4}$$

• $||x_i - x_j||_2 \ge \frac{1}{2}$ for all $x_i, x_j \in \mathcal{X}$
• $||\frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N}I|| \le \frac{\beta}{N}$ for some $\beta > 0$

Strategy

Construct ${\mathcal X}$ by sampling (with replacement) from

$$\mathcal{U} = \left\{ x \in \{0, \sqrt{1/S}, -\sqrt{1/S}\}^N : \|x\|_0 \le S \right\}$$

Repeat for $|\mathcal{X}| = (N/S)^{S/4}$ iterations.

With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]

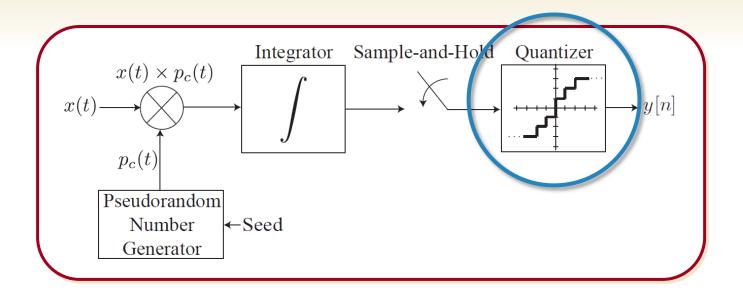
Compressive Sensing: An Apology

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of quantization

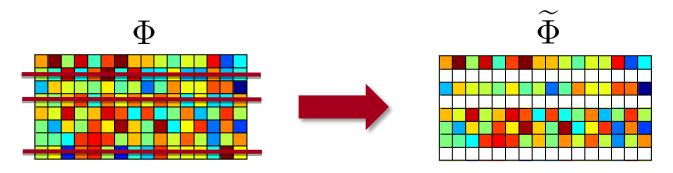
Signal Recovery with Quantization



- Finite-range quantization leads to *saturation*, i.e., *unbounded errors* on the largest measurements
- Quantization noise changes as we change the sampling rate

Saturation Strategies

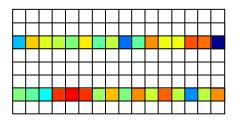
• **Rejection:** Ignore saturated measurements



- **Consistency:** Retain saturated measurements. Use them only as inequality constraints on the recovered signal
- If the rejection approach works, the consistency approach should automatically do better

Rejection and Democracy

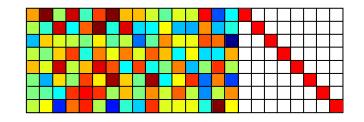
- The RIP is *not sufficient* for the rejection approach
- Example: $\Phi = I$
 - perfect isometry
 - every measurement must be kept
- We would like to be able to say that any submatrix of Φ with sufficiently many rows will still satisfy the RIP

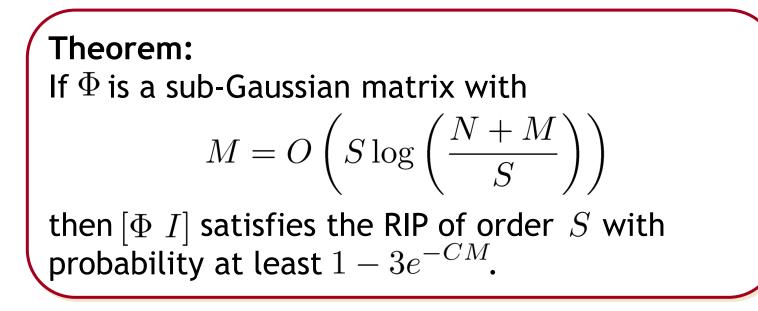


• Strong, *adversarial* form of "democracy"

Sketch of Proof

• Step 1: Concatenate the identity to Φ

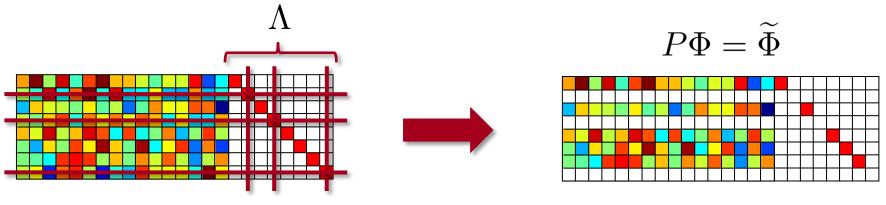




[D, Laska, Boufounos, and Baraniuk - 2009]

Sketch of Proof

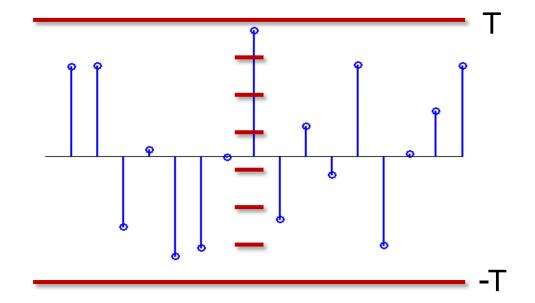
 Step 2: Combine with the "interference cancellation" lemma



- The fact that $[\Phi \ I]$ satisfies the RIP implies that if we take D extra measurements, then we can delete O(D) arbitrary rows of Φ and retain the RIP
- This is a strong *adversarial* notion of democracy

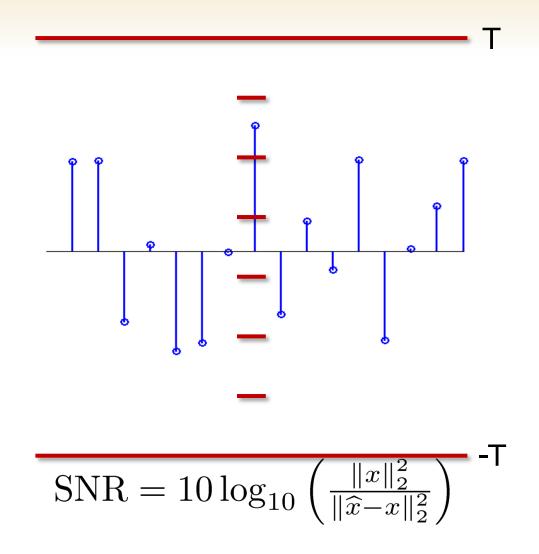
[D, Laska, Boufounos, and Baraniuk - 2009]

Rejection In Practice

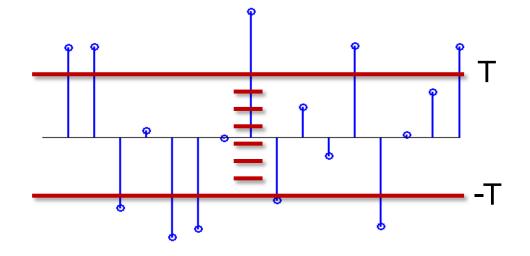


SNR =
$$10 \log_{10} \left(\frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

Rejection In Practice

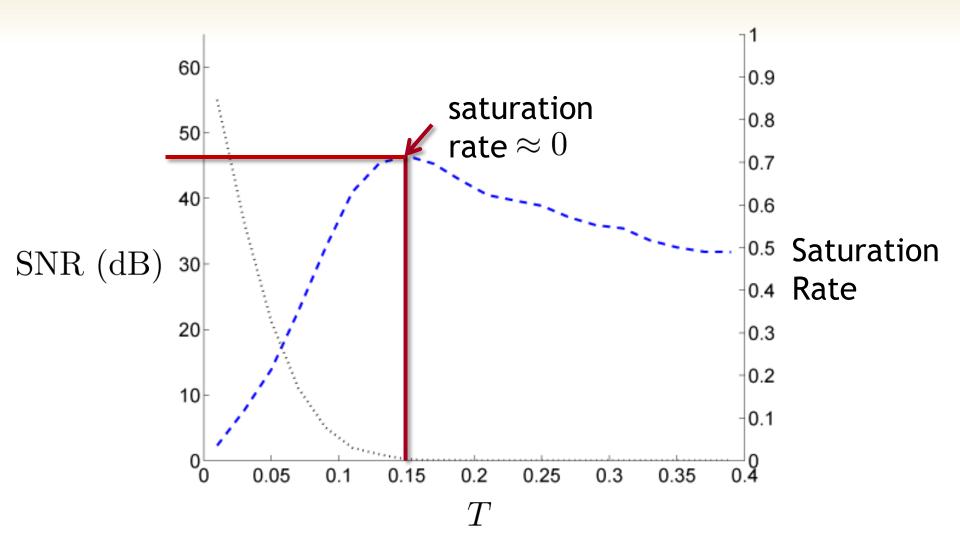


Rejection In Practice



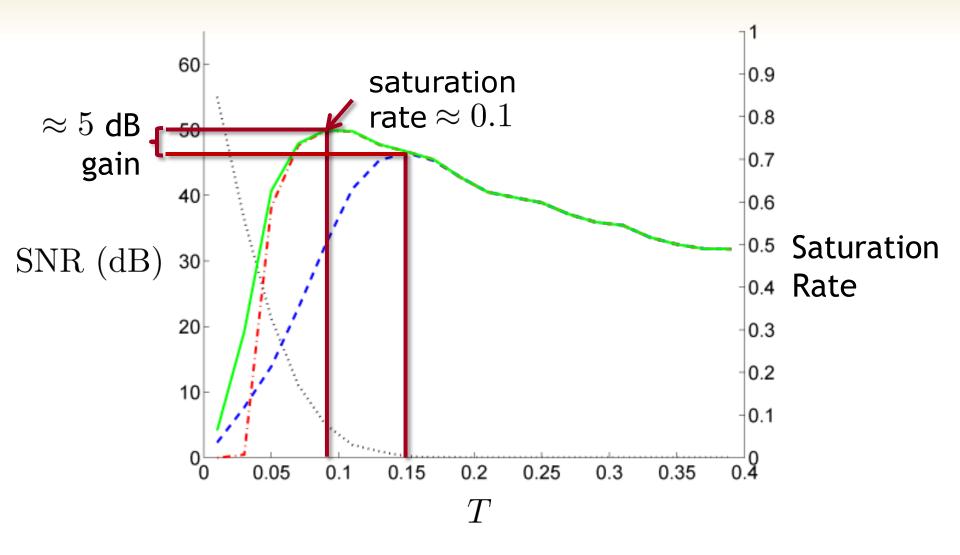
SNR =
$$10 \log_{10} \left(\frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

Benefits of Saturation



[Laska, Boufounos, D, and Baraniuk - 2011]

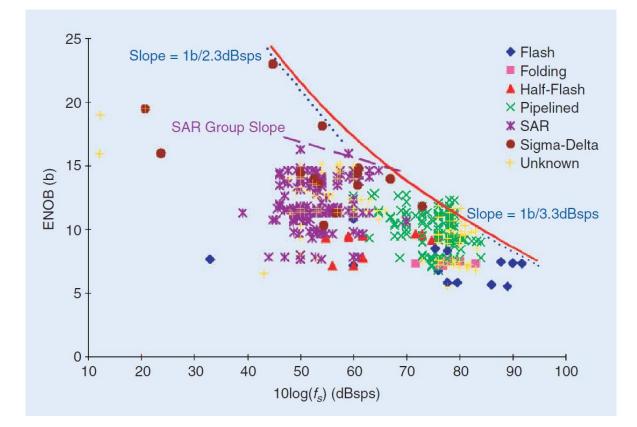
Benefits of Saturation



[Laska, Boufounos, D, and Baraniuk - 2011]

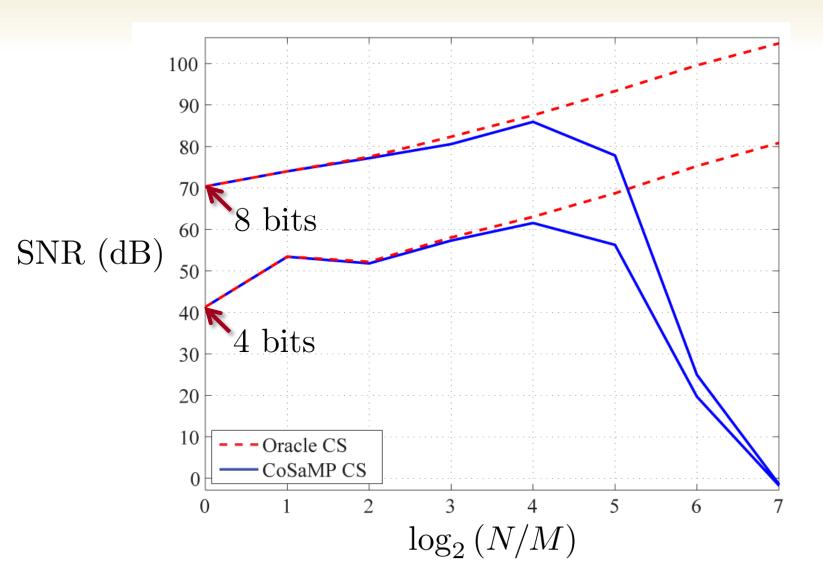
Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bitdepth, allowing for potential gains



[Le et al. - 2005]

Empirical SNR Improvement



[D, Laska, Treichler, and Baraniuk - 2011]

Conclusions

Cons

- signal noise can potentially be a problem
- nonadaptivity entails a tremendous SNR loss
- if you have signal noise or can get benefits from averaging, taking fewer measurements might be a really bad idea!

Pros

- if quantization noise dominates the error, CS can potentially lead to big improvements
- novel strategies for handling saturation errors
- low-bit "CS" might be useful even when ${\cal M}$ is relatively large