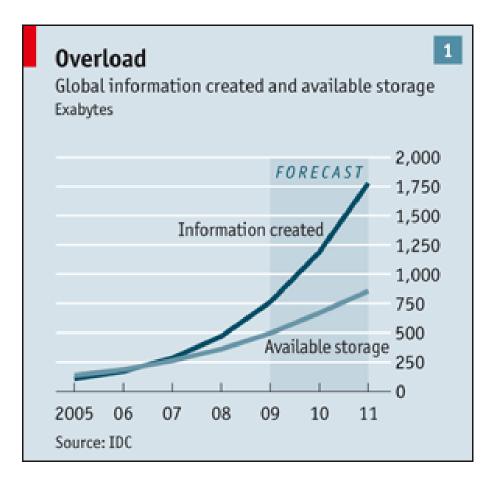
Corruption, Justice, and Democracy in Compressive Sensing

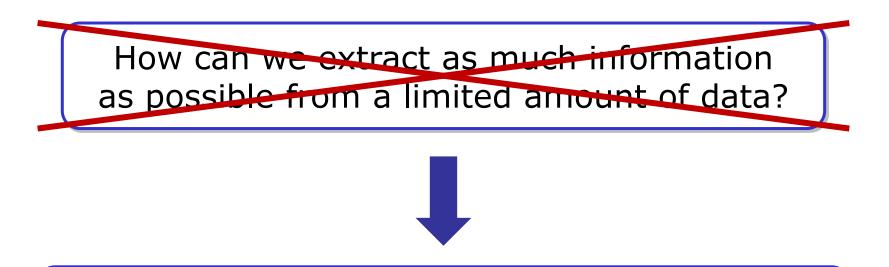
Mark Davenport

Data Deluge



In 2007 digital data *generated* > *total storage* by 2011, ½ of digital universe will have no home [The Economist – March 2010]

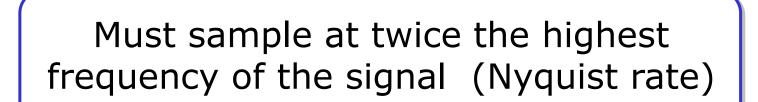
Data Deluge

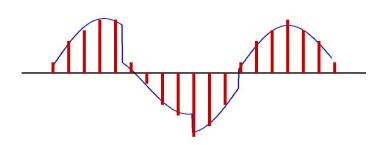


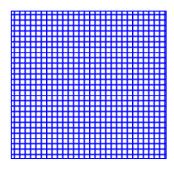
How can we extract any information at all from a massive amount of high-dimensional data?

Digital Revolution

• Foundation: *Shannon sampling theorem*





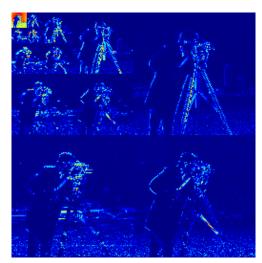


- High-frequency content = *lots of samples...*
- We typically try to compress the data
- Compression relies on *low-dimensional models*

Sparsity

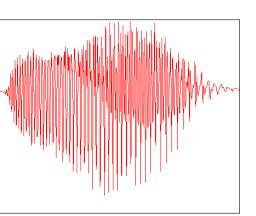
Many signals can be *compressed* in some representation/basis (Fourier, wavelets, ...)

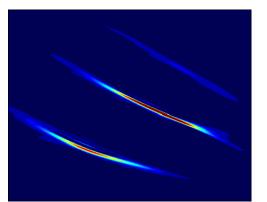
N pixels



 $K \ll N$ large wavelet coefficients

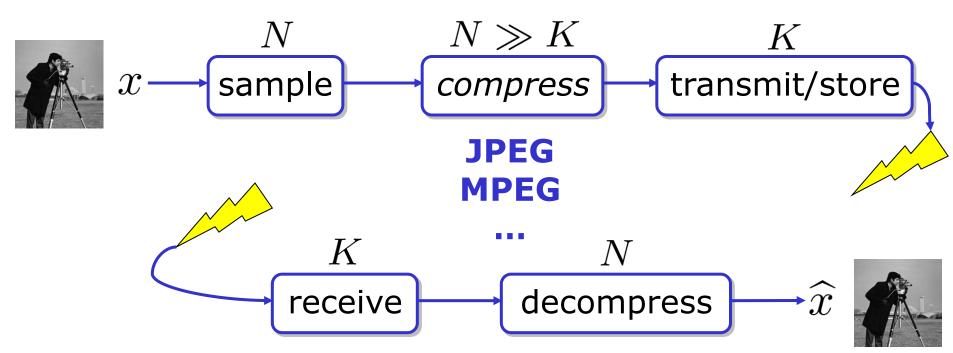
N wideband signal samples





Sample-Then-Compress Paradigm

- Standard paradigm for digital data acquisition
 - **sample** data (ADC, digital camera, ...)
 - compress data (signal-dependent, nonlinear)



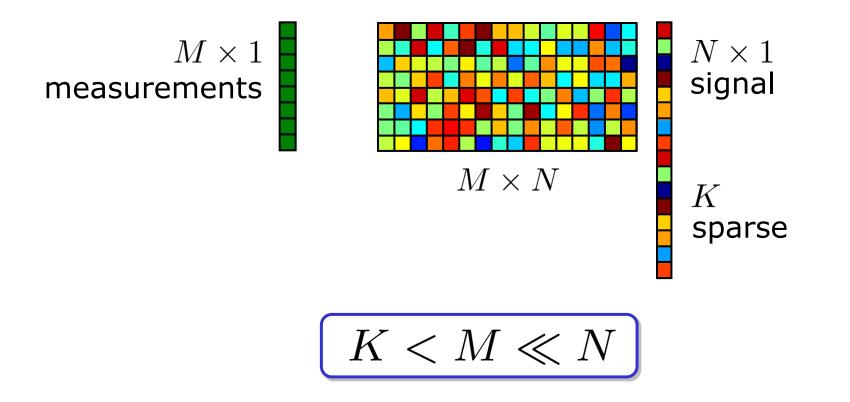
Sample-and-compress paradigm is *wasteful*

samples cost \$\$\$ and/or time

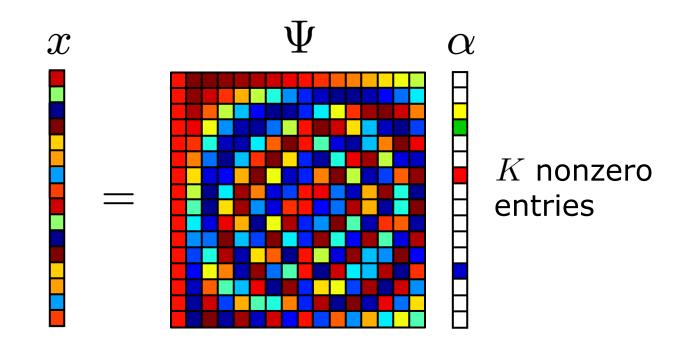
Compressive Sensing

Replace samples with *linear measurements*

$$y = \Phi x$$



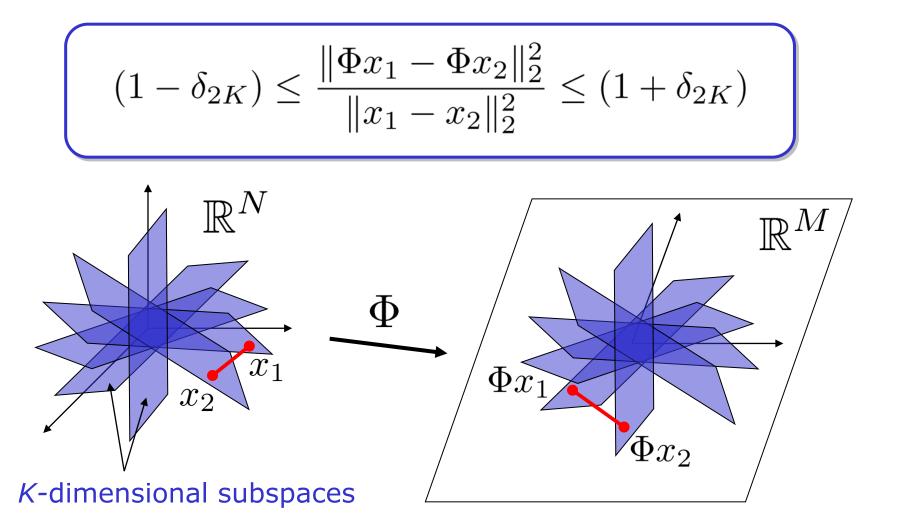
Sparsity



For now: Assume $\Psi = I$

Restricted Isometry Property (RIP)

- Preserve the structure of sparse signals
- For all *K*-sparse x_1 and x_2



Matrices Satisfying the RIP

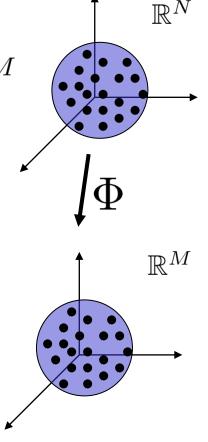
• Pick Φ at random using a sub-Gaussian distribution

$$\mathbb{E}\left(e^{Xt}\right) \le e^{c^2t^2/2}$$

- For any fixed \boldsymbol{x}

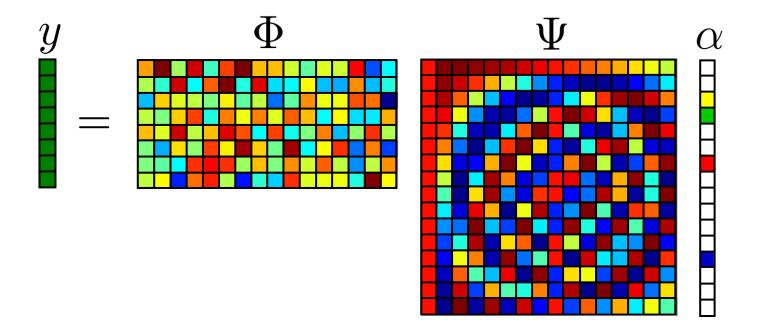
$$\mathbb{P}\left(\|\Phi x\|_{2}^{2} - \|x\|_{2}^{2}\right) \ge \epsilon \|x\|_{2}^{2} \le e^{-\widetilde{c}N}$$

- If $M \geq CK \log(N/K)$, then with high probability, Φ will satisfy the RIP
 - fix a 2K-dimensional subspace
 - pick a finite sampling of points on the sphere
 - repeat for all $\binom{N}{2K}$ subspaces
 - argue that Φ preserves the norm of each point
 - extend from point set to entire sphere

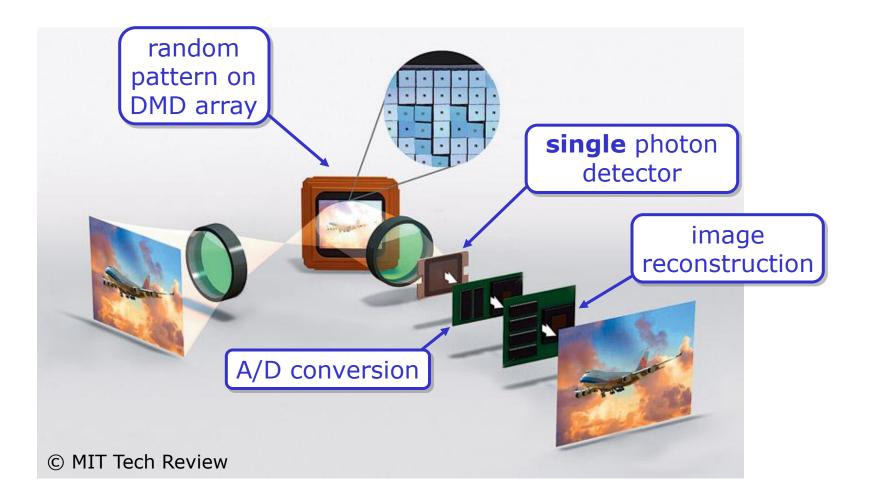


Universality

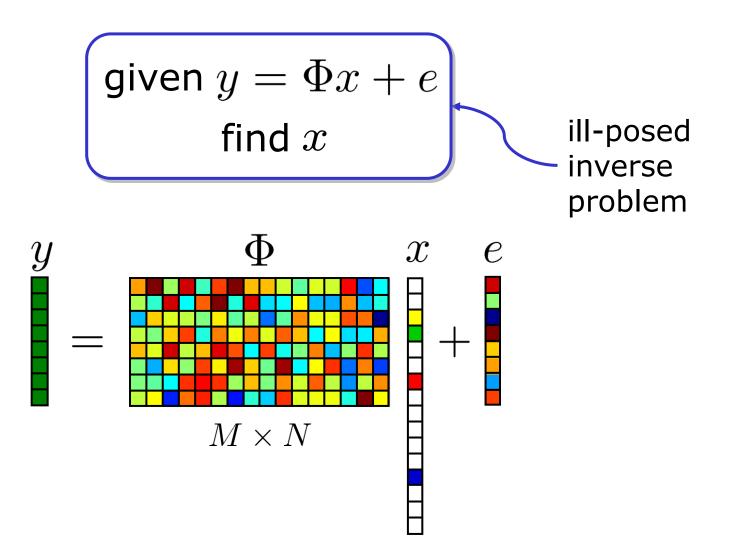
Random matrix will work with *any* fixed orthonormal basis (with high probability)



"Single-Pixel" CS Camera



Signal Recovery



Signal Recovery in Noise

• Optimization-based methods

$$\widehat{x} = \underset{x \in \mathbb{R}^{N}}{\arg\min} \|x\|_{1}$$

s.t.
$$\|y - \Phi x\|_{2} \le \epsilon$$

Greedy/Iterative algorithms
 – OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT

$$\|\widehat{x} - x\|_2 \le C_0 \|e\|_2 + C_1 \frac{\|x - x_K\|_1}{\sqrt{K}}$$

Corruption

 $y = \Phi x + e$

- What if *e* represents corruption or *structured noise*, rather than an arbitrary perturbation?
- Structured signal noise:

$$y = \Phi x_S + \Phi x_I$$

• Structured measurement noise:

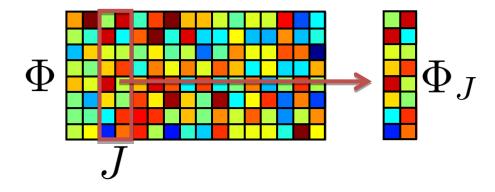
$$y = \Phi x + \Omega e$$

Interference Cancellation

Suppose $x = x_S + x_I$ where x_S is sparse with *unknown* support and x_I is sparse with *known* support J

Goal: Design an $M \times M$ matrix P such that $\|P(\Phi x_I)\|_2 \approx 0$

$$\|P(\Phi x_S)\|_2 \approx \|\Phi x_S\|_2$$



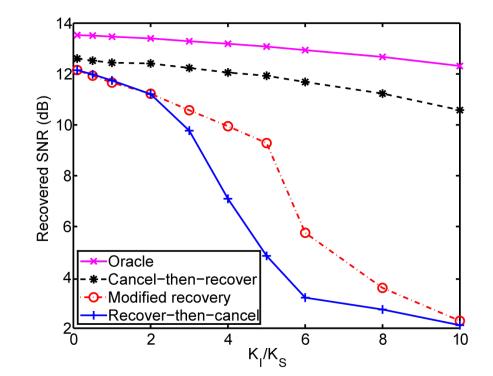
 $P = I - \Phi_J \Phi_J^{\dagger}$ Projection onto $\mathcal{R}(\Phi_J)$ $P \Phi_J = 0$

Interference Cancellation

If Φ satisfies the RIP of order $2K_S+K_I$, then $P\Phi$ satisfies

$$\left|1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \le \|P\Phi x\|_2^2 \le (1 + \delta)\|x\|_2^2$$

for all x such that $||x||_0 \leq 2K_S$ and $\operatorname{supp}(x) \cap J = \emptyset$.



Structured Measurement Noise

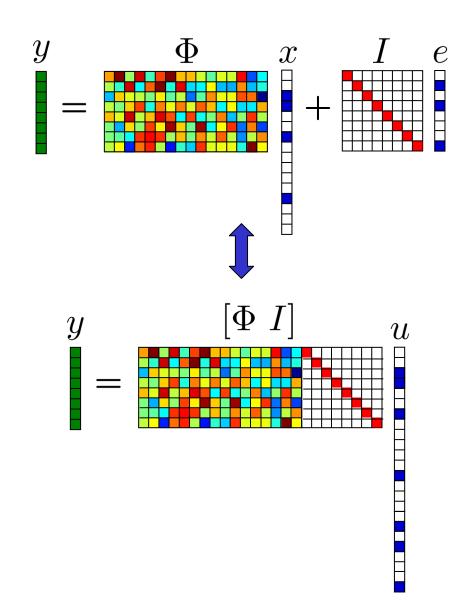
• We have already seen that we can be robust to certain kinds of structured signal noise

$$y = \Phi x_S + \Phi x_I$$

• What about structured measurement noise?



Sparse Noise Model



Justice Pursuit

$$\widehat{u} = \underset{u}{\operatorname{arg\,min}} \|u\|_{1}$$
s.t. $y = [\Phi \ I] u$

Does this matrix satisfy the RIP?

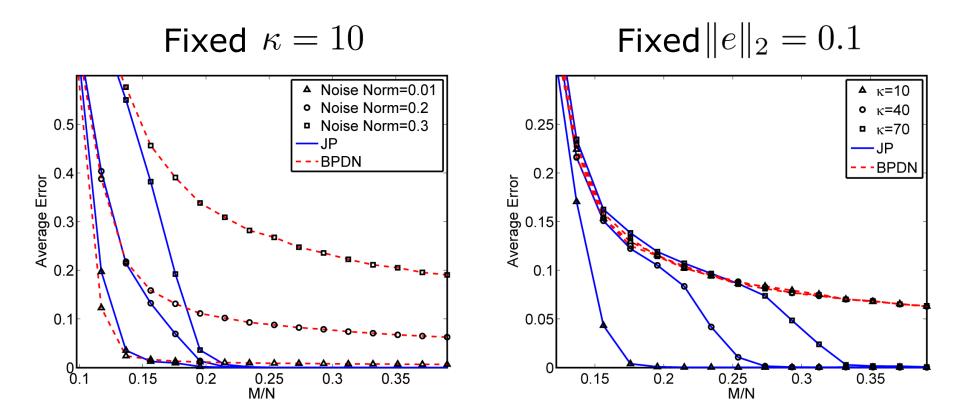
Theorem: If Φ is a sub-Gaussian matrix with

$$M = O\left((K + \kappa) \log\left(\frac{N + M}{K + \kappa}\right) \right)$$

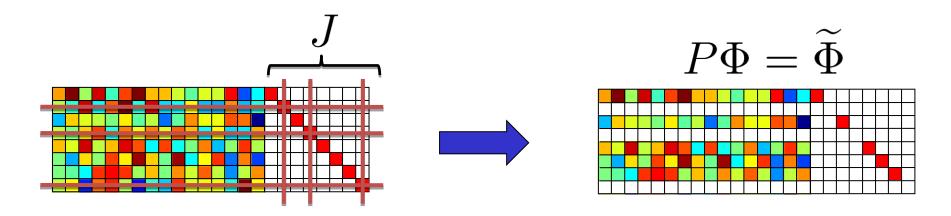
then $[\Phi \ I]$ satisfies the RIP of order $(K+\kappa)$ with probability at least $1-3e^{-CM}$

Justice Pursuit

We can recover sparse signals *exactly* in the presence of *unbounded* sparse noise



Justice and Democracy



- The fact that $[\Phi \ I]$ satisfies the RIP also implies that we can delete arbitrary rows of Φ and retain the RIP
- Random matrices satisfy a very strong adversarial form of democracy

Conclusions

- Corruption and Justice
 - If the signal noise is sparse with known support, it can be cancelled prior to recovery
 - If the *measurement noise* is sparse with potentially unknown support, it can be identified and cancelled
- Justice and Democracy
 - Radom measurements have benefits beyond the RIP and universality
 - Concentration of measure can be a powerful tool

dsp.rice.edu/cs