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Data Deluge
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In 2007 digital data generated > total storage

by 2011, V> of digital universe will have no home
[The Economist — March 2010]



Data Deluge

[ How can we extract any information at all from J

a massive amount of high-dimensional data?




Digital Revolution

e Foundation: Shannon sampling theorem
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Must sample at twice the highest
frequency of the signal (Nyquist rate)
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e High-frequency content = /ots of samples...
e We typically try to compress the data
e Compression relies on low-dimensional models



Sparsity

Many signals can be compressed in some
representation/basis (Fourier, wavelets, ...)

KKN
N large
pixels wavelet

coefficients
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wideband large
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samples coefficients




Sample-Then-Compress Paradigm

e Standard paradigm for digital data acquisition
- sample data (ADC, digital camera, ...)
- compress data (signal-dependent, nonlinear)
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e Sample-and-compress paradigm is wasteful
- samples cost $$$ and/or time




Compressive Sensing

Replace samples with /inear measurements

N x 1
signal

M x1
measurements

sparse




Sparsity

K nonzero
entries
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For now: Assume ¥ = [



Restricted Isometry Property (RIP)

e Preserve the structure of sparse signals
e For all K-sparse x1 and x-
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K-dimensional subspaces




Matrices Satisfying the RIP

e Pick @ at random using a sub-Gaussian distribution
D (eXt) < €c2t2/2

e For any fixed = RN

P (@] — llz3] > ellz]z) < e

o If M > CKlog(N/K), then with high
probability, ® will satisfy the RIP

- fix a 2K -dimensional subspace
— pick a finite sampling of points on the sphere

- repeat for all (,,) subspaces h
- argue that ® preserves the norm of each point

- extend from point set to entire sphere



Universality

Random matrix will work with any fixed orthonormal
basis (with high probability)
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“Single-Pixel” CS Camera

random
patternon| g
DMD array '''' =
|7 [ single photon
detector
image
- reconstruction
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A/D conversion
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Signal Recovery
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find x

giveny = ®x + ¢
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\ ill-posed
Y, inverse
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Signal Recovery in Noise

e Optimization-based methods

r = argmin ||x|
reERN

st ly —Pxll2 <e

e Greedy/Iterative algorithms
- OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT
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Corruption

y=>Pxr +e

e What if e represents corruption or structured noise,
rather than an arbitrary perturbation?

e Structured signal noise:
y=drg + dbx;
e Structured measurement noise:

y = ®x + Qe



Interference Cancellation

Suppose * = s + 7 where Ts is sparse with unknown
support and xy is sparse with known support J

Goal: Design an M x M matrix P such that
|P(®zy)|]2 ~ 0

|P(®zs)]l2 = || P25

P=1-0,0"
O
J Projection onto R(®,)

Pb;=0



Interference Cancellation

/If ¢ satisfies the RIP of order 2K ¢ + K7, then )
P® satisfies

)
(1 _ m) J2ll2 < [ POz2 < (1+ 6|13

for all x such that||z||o < 2Ks and supp(z) N J = 0.
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Structured Measurement Noise

e We have already seen that we can be robust to
certain kinds of structured signal noise
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e \What about structured measurement noise?
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Sparse Noise Model




Justice Pursuit

U = arg min Hu”l Does this matrix

w /_ satisfy the RIP?

st. y=1[® Iu

/Theorem: If ®is a sub-Gaussian matrix with\

M:O((KJr/-i)log (]}Qiﬂg))

then |® I]satisfies the RIP of order (K + k) with
\probability at least 1 — 3¢~ ¢M /




Justice Pursuit

We can recover sparse signals exactly in the presence
of unbounded sparse noise

Fixed < = 10 Fixed||e|l2 = 0.1
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Justice and Democracy
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e The fact that|® [| satisfies the RIP also implies that
we can delete arbitrary rows of ® and retain the RIP

e Random matrices satisfy a very strong adversarial
form of democracy



Conclusions

e Corruption and Justice

— If the signal noise is sparse with known support, it can
be cancelled prior to recovery

- If the measurement noise is sparse with potentially
unknown support, it can be identified and cancelled

e Justice and Democracy

— Radom measurements have benefits beyond the RIP
and universality

— Concentration of measure can be a powerful tool
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