
Compressive Sensing:

A new approach to data acquisition

Mark Davenport

Rice University

dsp.rice.edu/cs



2

Pressure is on Signal Processing

• Increasing pressure on signal/image 
processing hardware and algs to support

higher rates / resolution

larger numbers of sensors

greater number of modalities

deluge of data
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Sensing by Sampling
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Data Acquisition and Representation

• Time: A/D converters, receivers, …

• Space: cameras, imaging systems, …

• Foundation:  Shannon sampling theorem

Must sample at 2x highest frequency of 
the signal  (Nyquist rate)
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Sparsity

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor
coefficients

• Many signals can be compressed in some 
representation/basis (Fourier, wavelets, …)
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Sensing by Sampling

• Standard paradigm for digital data acquisition

– sample data (ADC, digital camera, …) 

– compress data (signal-dependent, nonlinear)

sparse
wavelet
transform

sample compress transmit/store

receive decompress
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Compressive Sensing
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From Samples to Measurements

• Shannon was a pessimist

– worst case bound for 
any bandlimited signal

• Compressive sensing (CS) principle  

“sparse signals can be recovered from a small 

number of nonadaptive linear measurements”

– integrates sensing, compression, processing

– based on new uncertainty principles and the 
concept of incoherency between two bases
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Incoherent Bases

• Spikes and sines (Fourier)
(Heisenberg)
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Incoherent Bases

• Spikes and “random basis”
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Incoherent Bases

• Spikes and “random sequences” (codes) 
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Incoherent Bases
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Compressive Sensing 
[Candes, Romberg, Tao; Donoho]

• Signal     is    -sparse in basis/dictionary

– WLOG assume sparse in space domain

• Replace samples with linear projections

measurements
sparse
signal

nonzero
entries
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• Measure linear projections onto incoherent
basis where data is not sparse/compressible

• Reconstruct via nonlinear processing
(optimization)

Compressive Sensing

one row 
of

project transmit/store

receive reconstruct



15

• Reconstruction/decoding:

CS Signal Recovery

given             
find

measurements
sparse
signal

nonzero
entries

ill-posed 
inverse problem
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• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• Fast, but wrong

• Solution is
almost never sparse

CS Signal Recovery

given             
find
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• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• L0:

• Correct, but slow (NP-Hard)

• this measurements suffice 

[Bresler; Wakin]

CS Signal Recovery

given             
find

number of
nonzero
entries
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• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• L0:

• L1:

• Gives same answer as L0, mild increase in  
[Candes et al, Donoho]

CS Signal Recovery

given             
find

linear program
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original (65k pixels)

20k random 
projections

7k–term wavelet 
approximation

E. J. Candès and J. Romberg, “Practical Signal Recovery from Random Projections,” 2004. 

CS Signal Recovery
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Why L2 Doesn’t Work 

least squares,
minimum L2 solution
is almost never sparse
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Why L1 Works

minimum L1 solution
= sparsest solution if
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• Random matrix is incoherent with any fixed 
orthonormal basis (with high probability)

Universality
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Compressive Sensing
in Action
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Single-Pixel CS Camera

© MIT Tech Review

random
pattern on
DMD array

single photon 
detector

image
reconstruction

A/D conversion

• New modalities

• Low cost

• Low power
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TI Digital Micromirror Device (DMD)
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First Image Acquisition

ideal 
256x256 pixels

© MIT Tech Review

20x
sub-Nyquist

50x
sub-Nyquist
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Second Image Acquisition

10x sub-Nyquist

• Low-light scenario (photomultiplier tube)

• Used three color filters, separately 
reconstruct each color range

ideal 
256x256 pixels
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World’s First Photograph

• 1826, Joseph Niepce

• Farm buildings and sky 

• 8 hour exposure
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CS Hallmarks

• CS changes the rules of data acquisition
– exploits a priori signal sparsity information 

• Universal
– same random projections / hardware can be used 

for any compressible signal class (generic)

• Democratic
– each measurement carries the same amount of 

information

– simple encoding

– robust to measurement loss and quantization

• Asymmetrical
– most processing at decoder
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Distributed 
Compressive Sensing
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Sensor Networks

• Measurement, monitoring, tracking of 
distributed physical phenomena using 
wireless embedded sensors

– environmental conditions

– industrial monitoring

– chemicals

– weather

– sounds

– vibrations

– seismic

– wildfires

– pollutants
…
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Challenges

• Computational/power asymmetry

– limited compute power on each sensor node

– limited (battery) power on each sensor node

• Hostile communication environment

– multi-hop

– high loss rate

• Must be energy efficient

– minimize communication
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Distributed Sensing

• Transmitting raw data
can be inefficient

destination

raw
data
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Distributed Sensing

• Transmitting raw data
can be inefficient

• Can we exploit
– intra-sensor correlation?
– inter-sensor correlation?
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Collaborative Sensing

• Output results rather 
than raw data

• In-network data 
processing

• Collaboration requires 
inter-sensor communication  

destination

compressed 
data

results
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Distributed Compressed Sensing

• Take random measurements 
at each sensor

• Reconstruct jointly

• Exploit intra- & 
inter-sensor correlations
– Zero communication overhead

• Analogy w/ Slepian-Wolf 
coding

destination

compressed 
data
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Common Sparse Supports Model

• Example:  
audio signals

– sparse in Fourier Domain

– same frequencies 
received by each node

– different attenuations and 
delays (magnitudes and 
phases)
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• Measure J signals, each K-sparse

• Signals share sparse components 
but with different coefficients

…

Common Sparse Supports Model
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…

Common Sparse Supports Model
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Ensemble Reconstruction Comparison

• Separate reconstruction using linear 
programming

– measurements per sensor:

• Simultaneous Orthogonal Matching Pursuit

– extends greedy algorithms to signal ensembles 
sharing a sparse support     
[Tropp, Gilbert, Strauss; Temlyakov]

– measurements per sensor:
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SimulationK=5
N=50

Separate
Joint
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Real Data Example 

• Environmental Sensing in Intel Berkeley Lab

• = 49 sensors,     = 1024 samples each

• Compare:

– transform coding K largest terms per sensor

– independent CS 4K measurements per sensor

– DCS 4K measurements per sensor 
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Temperature – Wavelets, K = 20
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• Random projections for sensing and encoding

– exploit both intra- and inter-sensor correlations

– joint source/channel coding

• Universality 

– generic hardware

• Simple quantization

• Robust

– to noise, quantization, loss

– progressive

• Zero inter-sensor collaboration

DCS Benefits
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Conclusions

• Compressive sensing

– exploits signal sparsity/compressibility information

– based on new uncertainty principles

– integrates sensing, compression, processing

– natural for sensor network applications

• Ongoing research 

– new algorithms for analog-to-information 
conversion

– fast algorithms based on ECC matrices

– manifold models for multiple signals/images

– connections to machine learning

dsp.rice.edu/cs


