Compressive Sensing:

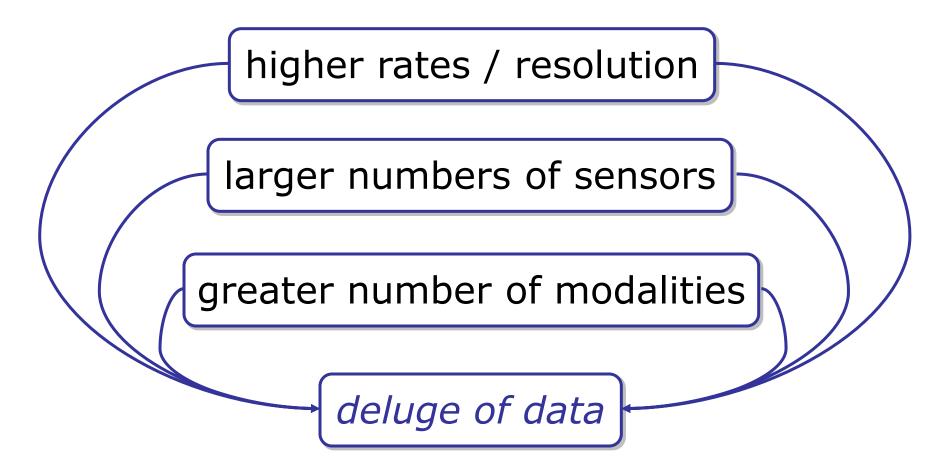
A new approach to data acquisition

Mark Davenport

Rice University dsp.rice.edu/cs

Pressure is on Signal Processing

 Increasing pressure on signal/image processing hardware and algs to support

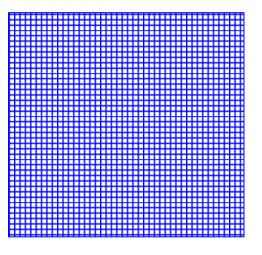


Sensing by Sampling

Data Acquisition and Representation

- Time: A/D converters, receivers, ...
- Space: cameras, imaging systems, ...





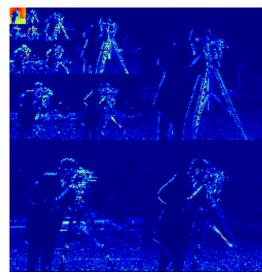
• Foundation: Shannon sampling theorem

Must sample at 2x highest frequency of the signal (Nyquist rate)

Sparsity

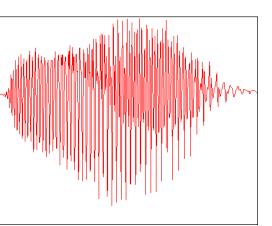
 Many signals can be *compressed* in some representation/basis (Fourier, wavelets, ...)

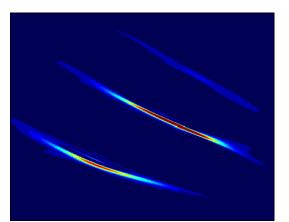
N pixels



 $K \ll N$ large wavelet coefficients

N wideband signal samples

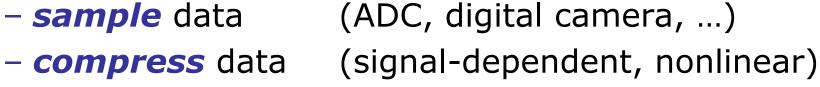


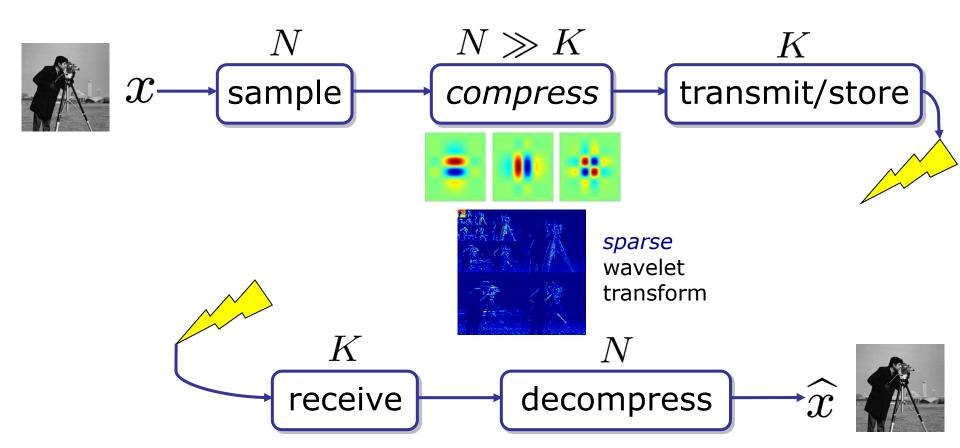


 $K \ll N$ large Gabor coefficients

Sensing by Sampling

- Standard paradigm for digital data acquisition
 - **sample** data





Compressive Sensing

From Samples to Measurements

- Shannon was a *pessimist*
 - worst case bound for any bandlimited signal

• Compressive sensing (CS) principle

"*sparse* signals can be recovered from a small number of *nonadaptive linear measurements*"

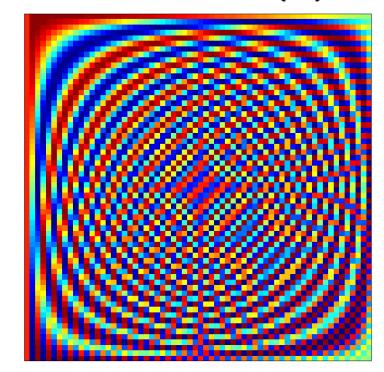
- integrates sensing, compression, processing
- based on new uncertainty principles and the concept of incoherency between two bases

• Spikes and sines (Fourier) (Heisenberg)

Ψ

$$=I$$

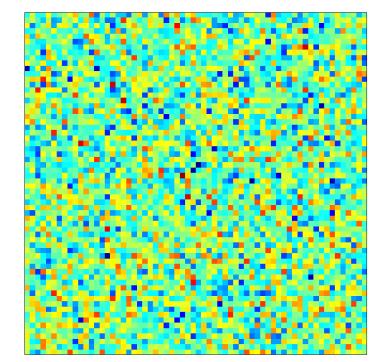
$$\Phi = \mathsf{idct}(I)$$



• Spikes and "random basis"

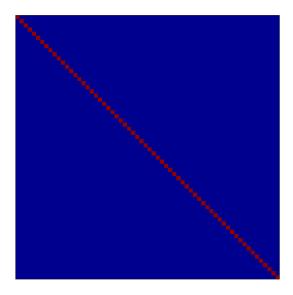
 $\Psi = I$

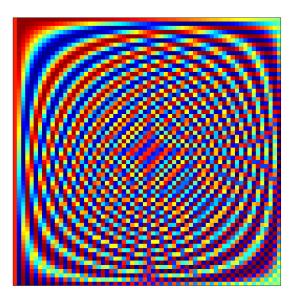
$$\Phi = \operatorname{randn}(N, N)$$

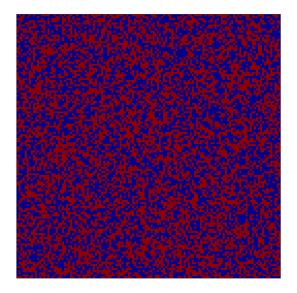


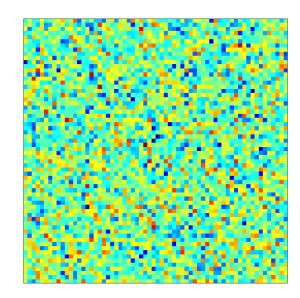
• Spikes and "random sequences" (codes)

 $\Psi = I$





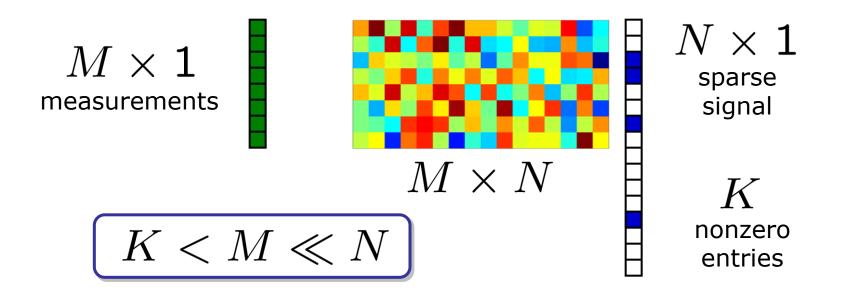




Compressive Sensing [Candes, Romberg, Tao; Donoho]

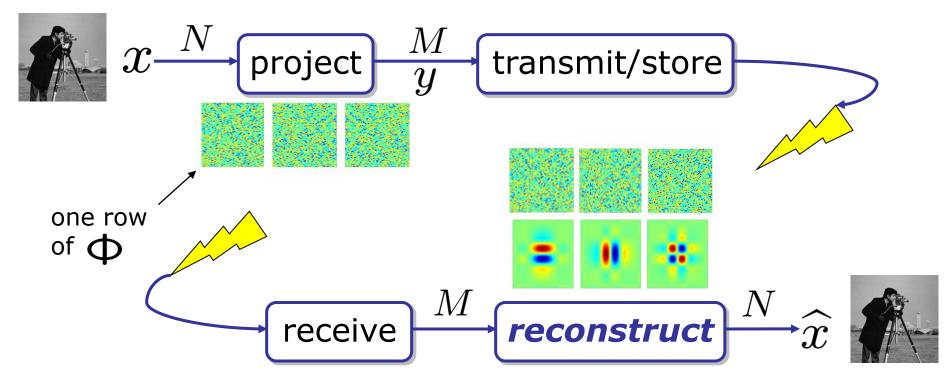
- Signal x is K-sparse in basis/dictionary Ψ WLOG assume sparse in space domain $\Psi=I$
- Replace samples with *linear projections*

$$y = \Phi x$$



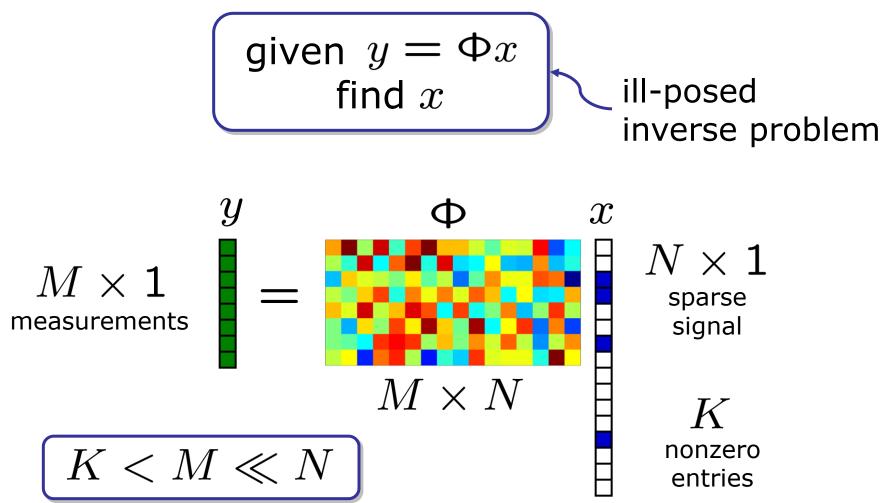
Compressive Sensing

 Measure linear projections onto *incoherent* basis where data is *not sparse/compressible*



 Reconstruct via *nonlinear processing* (optimization)

• Reconstruction/decoding:

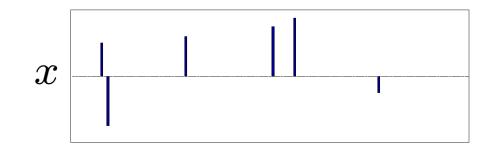


• Reconstruction/decoding: (ill-posed inverse problem)

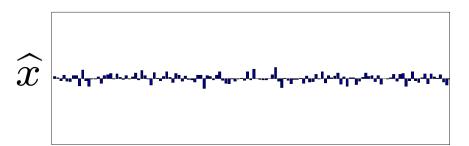
given
$$y = \Phi x$$
 find x

•
$$L_2$$
: $\widehat{x} = \arg\min_{y=\Phi x} ||x||_2 \longrightarrow \widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$

• Fast, but wrong



 Solution is *almost never* sparse



• Reconstruction/decoding: (ill-posed inverse problem)

given
$$y = \Phi x$$

find x

- L_2 : $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_2$
- L_0 : $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_0$ ------

number of nonzero entries

- Correct, but *slow* (NP-Hard)
- M = K + 1 measurements suffice [Bresler; Wakin]

• Reconstruction/decoding: (ill-posed inverse problem)

given
$$y = \Phi x$$

find x

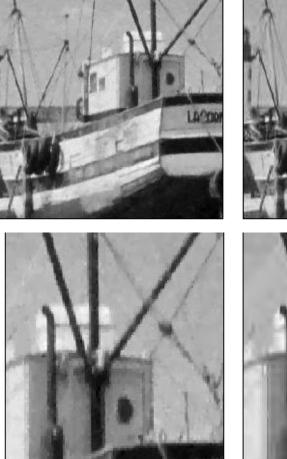
- L_2 : $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_2$
- L_0 : $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_0$

•
$$L_1$$
: $\hat{x} = \arg\min_{y=\Phi x} \|x\|_1$ — linear program

• Gives same answer as L₀, mild increase in M [Candes et al, Donoho]

$$M = O(K \log(N/K) \ll N)$$

original (65k pixels)

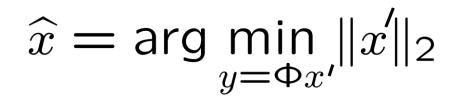


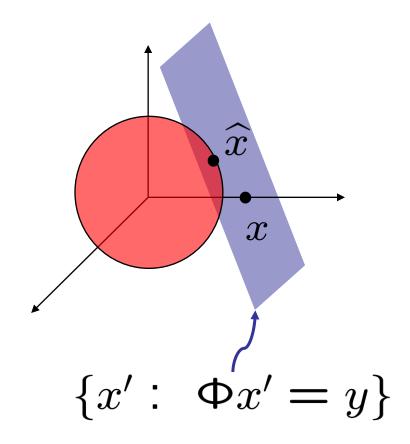
20k random projections

7k-term wavelet approximation

19

Why L₂ Doesn't Work

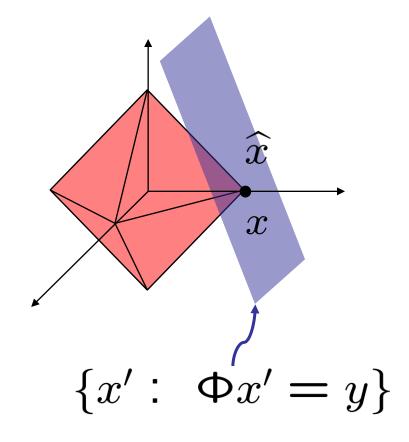




least squares, minimum *L*₂ solution is almost **never sparse**

Why L₁ Works

 $\widehat{x} = \arg\min_{y = \Phi x'} \|x'\|_1$

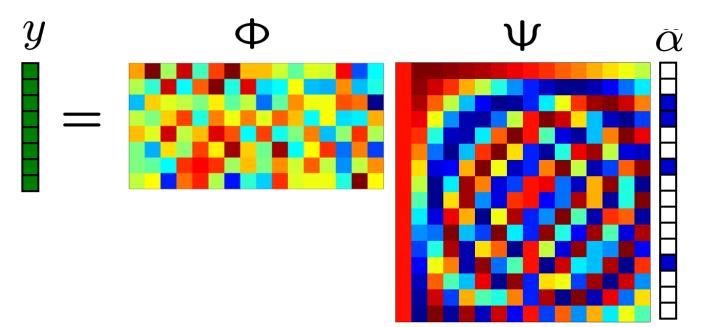


minimum **L**₁ solution = sparsest solution if

 $M = O(K \log(N/K)) \ll N$

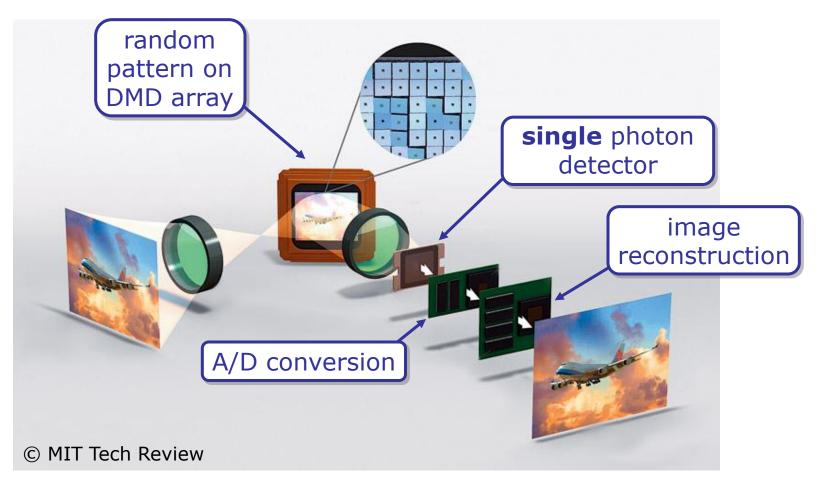
Universality

 Random matrix is incoherent with *any* fixed orthonormal basis (with high probability)



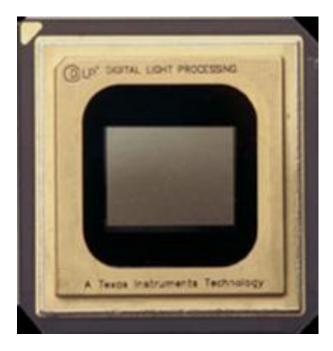
Compressive Sensing in Action

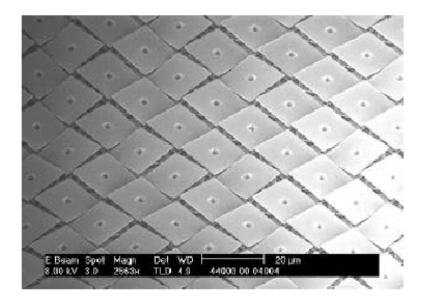
Single-Pixel CS Camera

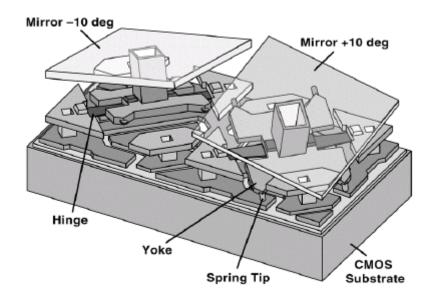


- New modalities
- Low cost
- Low power

TI Digital Micromirror Device (DMD)



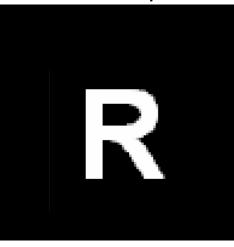




25

First Image Acquisition

ideal 256x256 pixels



20x sub-Nyquist

50x sub-Nyquist

Second Image Acquisition

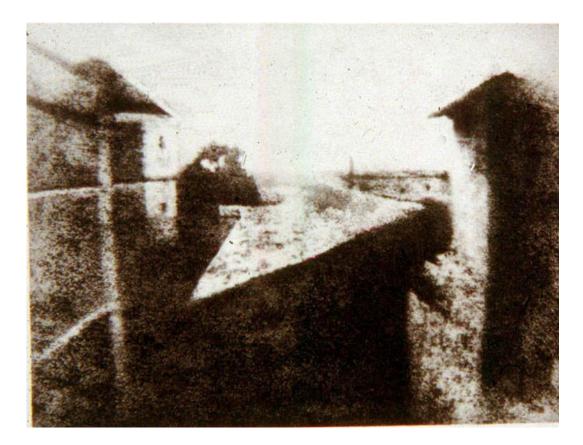
- Low-light scenario (photomultiplier tube)
- Used three color filters, separately reconstruct each color range

ideal 256x256 pixels

10x sub-Nyquist

World's First Photograph

- 1826, Joseph Niepce
- Farm buildings and sky
- 8 hour exposure



CS Hallmarks

CS changes the rules of data acquisition
 – exploits a priori signal *sparsity* information

Universal

 same random projections / hardware can be used for any compressible signal class (generic)

Democratic

- each measurement carries the same amount of information
- simple encoding
- robust to measurement loss and quantization

Asymmetrical

– most processing at decoder

Distributed Compressive Sensing

Sensor Networks

- Measurement, monitoring, tracking of *distributed physical phenomena* using wireless embedded sensors
 - environmental conditions
 - industrial monitoring
 - chemicals
 - weather
 - sounds
 - vibrations
 - seismic
 - wildfires
 - pollutants

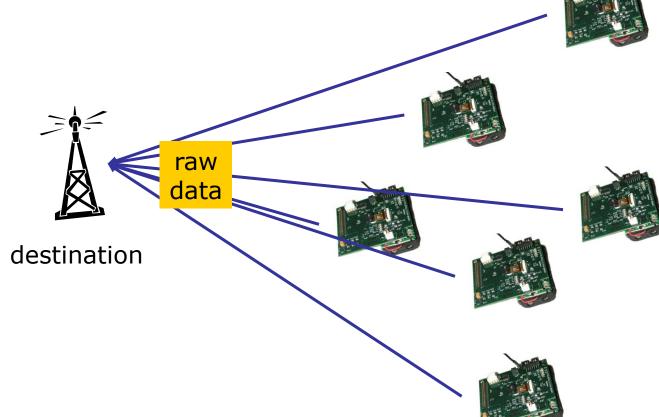
Challenges

- Computational/power asymmetry
 - limited compute power on each sensor node
 - limited (battery) power on each sensor node
- Hostile *communication* environment
 - multi-hop
 - high loss rate
- Must be *energy efficient* minimize communication

32

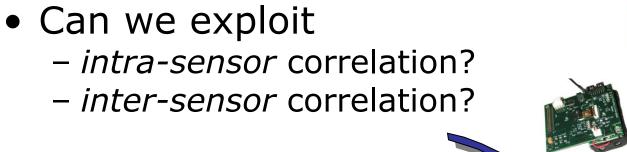
Distributed Sensing

• Transmitting *raw data* can be inefficient



Distributed Sensing

• Transmitting *raw data* can be inefficient



Collaborative Sensing

• Output *results* rather than raw data In-network data processing compressed data results destination Collaboration requires inter-sensor communication

Distributed Compressed Sensing

compressed

data

- Take random measurements at each sensor
- Reconstruct *jointly*

- Exploit *intra-* & *inter-sensor* correlations
 - Zero communication overhead
- Analogy w/ Slepian-Wolf coding

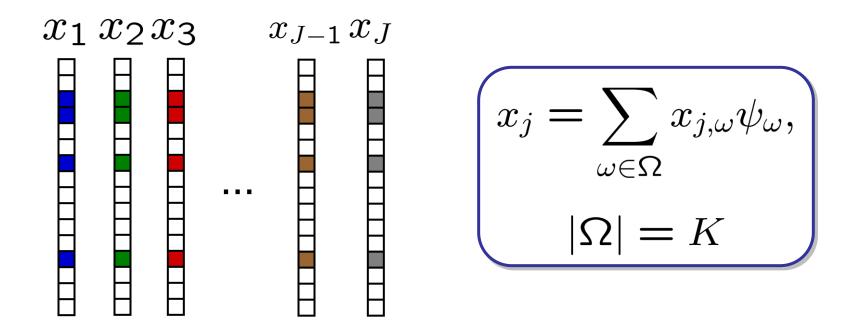
Common Sparse Supports Model

• Example: audio signals

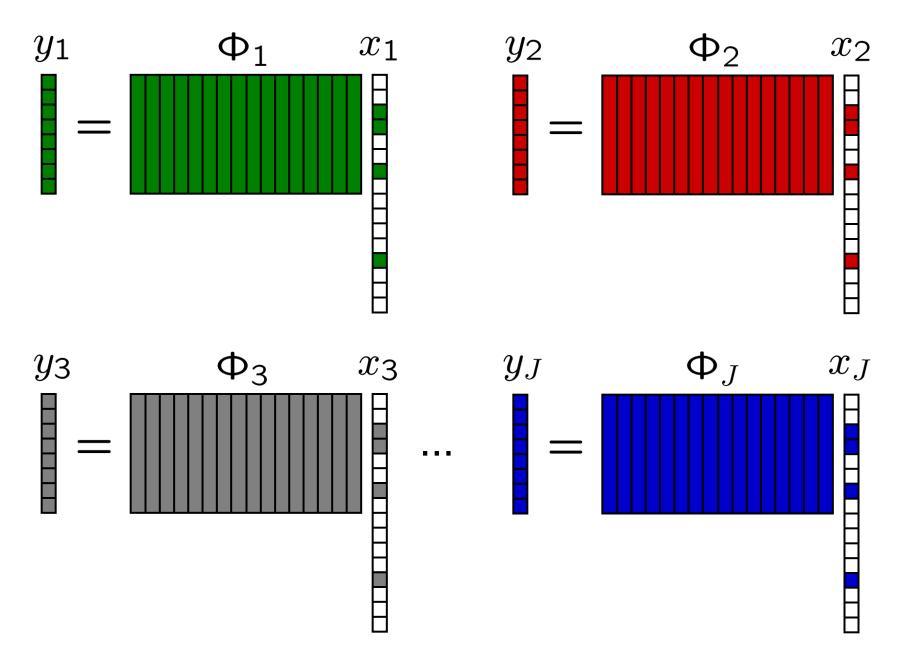
- sparse in Fourier Domain
- same frequencies
 received by each node
- different attenuations and delays (magnitudes and phases)

Common Sparse Supports Model

- Measure J signals, each K-sparse
- Signals share sparse components but with different coefficients



Common Sparse Supports Model

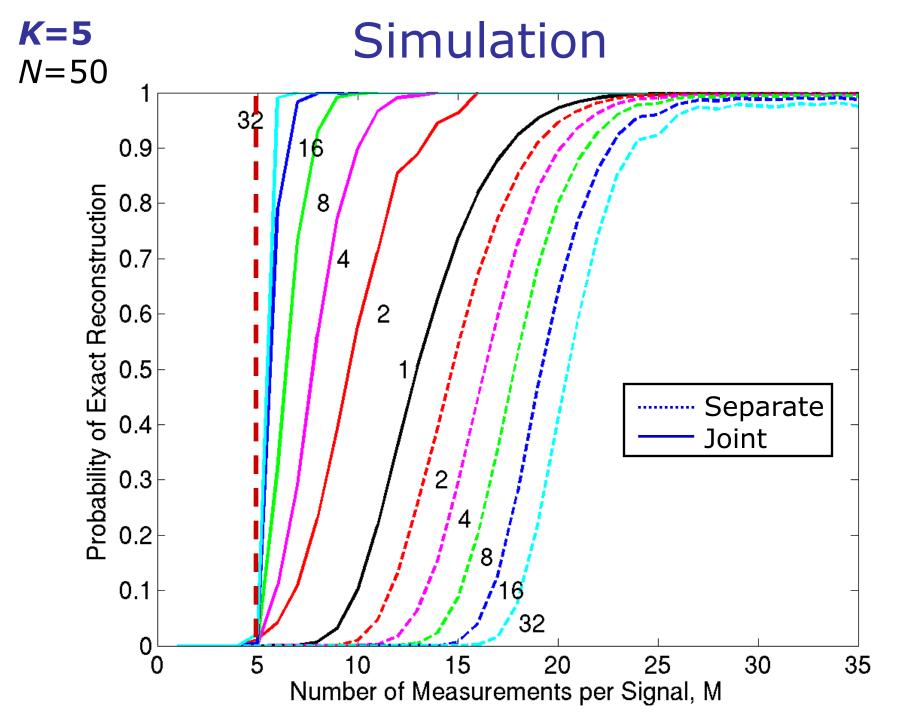


20

Ensemble Reconstruction Comparison

- Separate reconstruction using linear programming
 - measurements per sensor: $O(K \log(N/K))$
- Simultaneous Orthogonal Matching Pursuit
 - extends greedy algorithms to signal ensembles sharing a sparse support [Tropp, Gilbert, Strauss; Temlyakov]
 - measurements per sensor: cK

$$\lim_{J\to\infty} c = 1$$

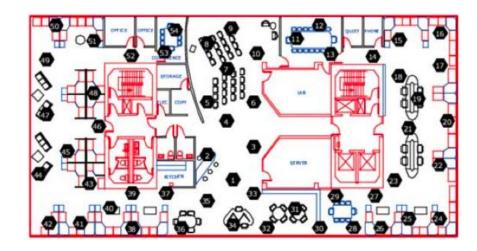


Real Data Example

- Environmental Sensing in Intel Berkeley Lab
- J = 49 sensors, N = 1024 samples each
- Compare:
 - transform coding

 - DCS

- K largest terms per sensor
- independent CS 4K measurements per sensor 4K measurements per sensor

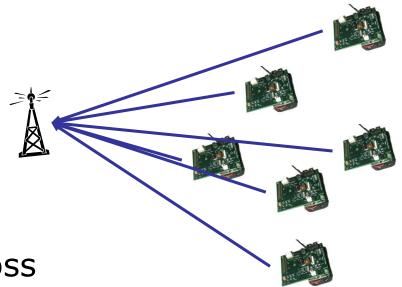




DCS Benefits

- Random projections for sensing and encoding

 exploit both intra- and inter-sensor correlations
 joint source/channel coding
- Universality
 - generic hardware
- Simple quantization
- Robust
 - to noise, quantization, loss
 - progressive
- Zero inter-sensor collaboration



Conclusions

Compressive sensing

- exploits signal sparsity/compressibility information
- based on new uncertainty principles
- integrates sensing, compression, processing
- natural for sensor network applications
- Ongoing research
 - new algorithms for *analog-to-information* conversion
 - *fast algorithms* based on ECC matrices
 - manifold models for multiple signals/images
 - connections to machine learning

