The Fundamentals of Compressive Sensing

Mark A. Davenport

Georgia Institute of Technology
School of Electrical and Computer Engineering
Sensor Explosion
Data Deluge

The data deluge
AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

The Economist

Overload
Global information created and available storage
Exabytes

Source: IDC
“If we sample a signal at twice its highest frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon
Data with high-frequency content is often not intrinsically high-dimensional.

Signals often obey low-dimensional models
- sparsity
- manifolds
- low-rank matrices

The “intrinsic dimension” S can be much less than the “ambient dimension” N.
Sample-Then-Compress Paradigm

- Standard paradigm for digital data acquisition
 - *sample* data (ADC, digital camera, ...)
 - *compress* data (signal-dependent, nonlinear)

- Sample-and-compress paradigm is *wasteful*
 - samples cost $$$ and/or time
Exploiting Low-Dimensional Structure

How can we exploit low-dimensional structure in the design of signal processing algorithms?

We would like to operate at the \textit{intrinsic dimension} at all stages of the information-processing pipeline.
Compressive Sensing

Replace samples with general *linear measurements*

\[y = \Phi x \]

\(M \times 1 \) measurements\(M \times N \) \(N \times 1 \) sampled signal \(S \)-sparse

[Donoho; Candès, Romberg, Tao - 2004]
Sparsity

\[x = \sum_{j=1}^{N} \alpha_j \psi_j \]

\[= \Psi \alpha \]

\[S \text{ nonzero entries} \]

\[\| \alpha \|_0 = S \]

\(N \) pixels

\(S \ll N \) large wavelet coefficients
Sparsity

\[x = \sum_{j=1}^{N} \alpha_j \psi_j \]

\[= \Psi \alpha \]

\[S \text{ nonzero entries} \]

\[\| \alpha \|_0 = S \]

\[N \text{ samples} \]

\[X(f) \]

\[S \ll N \]

large Fourier coefficients
Sparsity

\[x = \sum_{j=1}^{N} \alpha_j \psi_j \]

\[x = \Psi \alpha \]

\[S \text{ nonzero entries} \]

\[\|\alpha\|_0 = S \]
Core Theoretical Challenges

- How should we design the matrix Φ so that M is as small as possible?

$$y = \Phi \Psi \alpha$$

- How can we recover x from the measurements y?
Outline

• Sensing matrices and real-world compressive sensors
 - (structured) randomness
 - tomography, cameras, ADCs, ...

• Sparse signal recovery
 - convex optimization
 - greedy algorithms

• Beyond recovery
 - compressive signal processing

• Beyond sparsity
 - parametric models, manifolds, low-rank matrices, ...
Sensing Matrix Design
Analog Sensing is Matrix Multiplication

If \(x(t) \) is bandlimited,

\[
y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \text{sinc}(t/T_s - n) \rangle
\]

\[
\begin{bmatrix}
\vdots \\
y \\
\vdots \\
M \times 1
\end{bmatrix}
=
\begin{bmatrix}
\vdots \\
\Phi \\
\vdots \\
M \times N
\end{bmatrix}
\begin{bmatrix}
\vdots \\
x \\
\vdots \\
N \times 1 \text{ vector}
\end{bmatrix}
\]

Nyquist-rate samples of \(x(t) \)
Restricted Isometry Property (RIP)

\[1 - \delta \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq 1 + \delta \quad \|x_1\|_0, \|x_2\|_0 \leq S \]

\(\mathbb{R}^N \) \quad \Phi \quad \mathbb{R}^M

\[1 - \delta \leq \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \leq 1 + \delta \quad \|x\|_0 \leq 2S \]
RIP and Stability

If we want to guarantee that

$$\| x - \hat{x} \|_2 \leq C \| e \|_2$$

then we must have

$$\frac{1}{C} \leq \frac{\| \Phi x \|_2^2}{\| x \|_2^2} \quad \| x \|_0 \leq 2S$$
Sub-Gaussian Distributions

- As a first example of a matrix Φ which satisfies the RIP, we will consider *random* constructions

- Sub-Gaussian random variable: $\mathbb{E}(e^{\langle X, t \rangle}) \leq e^{c^2 t^2 / 2}$
 - Gaussian
 - Bernoulli/Rademacher (± 1)
 - any bounded distribution

- For any x, if the entries of Φ are sub-Gaussian, then there exists a δ such that with high probability

\[
(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2
\]
Johnson-Lindenstrauss Lemma

- Stable projection of a discrete set of P points

- Pick Φ at *random* using a sub-Gaussian distribution

- For any fixed x, $\|\Phi x\|_2$ concentrates around $\|x\|_2$ with (exponentially) high probability

- We preserve the length of all $O(P^2)$ difference vectors simultaneously if $M = O(\log P^2) = O(\log P)$.
JL Lemma Meets RIP

\[1 - \delta \leq \frac{\| \Phi x \|_2^2}{\| x \|_2^2} \leq 1 + \delta \quad \| x \|_0 \leq 2S \]

\[P = O \left((N/S)^S \right) \quad \rightarrow \quad M = O(S \log(N/S)) \]

[Baraniuk, Davenport, DeVore, Wakin -2008]
RIP Matrix: Option 1

- Choose a random matrix
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a “random subspace”

\[M = O(S \log(N/S)) \ll N \]

[Baraniuk, Davenport, DeVore, Wakin -2008]
RIP Matrix: Option 2

- Random Fourier submatrix

\[M = O(S \log^p(N/S)) \ll N \]

[Candès and Tao - 2006]
By first multiplying by random signs, a random Fourier submatrix can be used for efficient JL embeddings.

If you multiply the columns of *any* RIP matrix by random signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010]
Hallmarks of Random Measurements

Stable

With high probability, \(\Phi \) will preserve information, be robust to noise.

Universal (Options 1 and 3)

\(\Phi \) will work with *any* fixed orthonormal basis (w.h.p.)

\[
y \odot \Phi = \Psi \odot \alpha
\]

Democratic

Each measurement has “equal weight”
Compressive Sensors in Practice
$p_\theta(r_1)$

$r = x \cos \theta + y \sin \theta$

$p_\theta(r) = \int \int f(x, y) \delta(x \cos \theta + y \sin \theta - r) \, dx \, dy$
Each projection gives us a “slice” of the 2D Fourier transform of the original image.

Similar ideas in MRI.

Traditional solution: Collect lots (and lots) of slices.
"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."
CS for MRI Reconstruction

256x256 MRA

Backproj., 29.00dB

Fourier sampling
80 lines (M~0.28N)

Min TV, 34.23dB [CR]
Pediatric MRI

Traditional MRI

CS MRI

4-8 x faster!

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010]
“Single-Pixel Camera”

\[y[m] = \sum_{n \in I_m} x[n] \]

\[x[n] = \int_{\text{pixel}} \int_{n} x(t_1, t_2) \, dt_1 \, dt_2 \]

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]
TI Digital Micromirror Device
Compressive ADCs

Build high-rate ADC for signals with sparse spectra
Compressive ADCs

Build high-rate ADC for signals with sparse spectra

[Le - 2005; Walden - 2008]
Compressive ADC Approaches

- Random sampling
 - long history of related ideas/techniques
 - random sampling for Fourier-sparse data equivalent to obtaining random Fourier coefficients for sparse data

- Random demodulation
 - CDMA-like spreading followed by low-rate uniform sampling
 - modulated wideband converter
 - compressive multiplexor, polyphase random demodulator

- Both approaches are specifically tailored for Fourier-sparse signals
Random Demodulator

\[x(t) \times p_c(t) \xrightarrow{\text{Integrator}} \text{Sample-and-Hold} \xrightarrow{\text{Quantizer}} y[n] \]

\[X(f) \]

[1] Tropp, Laska, Duarte, Romberg, Baraniuk - 2010
Random Demodulator

\[x(t) \times p_c(t) \]

\[\int \]

Sample-and-Hold

Quantizer

\[y[n] \]

Pseudorandom Number Generator

Seed

\[X(f) \]

\[f \]

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]
Empirical Results

\[M \approx 1.7S \log(N/S + 1) \]

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]
Example: Frequency Hopper

Nyquist rate sampling

20x sub-Nyquist sampling
Compressive Multiplexor

[Slavinsky, Laska, Davenport, Baraniuk - 2011]
Compressive Multiplexor in Hardware

- Boils down to:
 - 1 LFSR
 - J switches
 - $2J$ resistors
 - 2 op amps
 - 1 low-rate ADC

1.1mm x 1.1mm ASIC on its way!

[Slavinsky, Laska, Davenport, Baraniuk - 2011]
Compressive Sensors Wrap-up

- CS is built on a theory of \textit{random measurements}
 - Gaussian, Bernoulli, random Fourier, fast JLT
 - stable, universal, democratic

- Randomness can often be built into real-world sensors
 - tomography
 - cameras
 - compressive ADCs
 - microscopy
 - astronomy
 - sensor networks
 - DNA microarrays and biosensing
 - radar
 - ...
Sparse Signal Recovery
Sparse Signal Recovery

- Optimization / ℓ_1 -minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - Stagewise OMP (StOMP), regularized OMP (ROMP)
 - CoSaMP, Subspace Pursuit, IHT, ...
Sparse Recovery: Noiseless Case

Given $y = \Phi x$

Find x

- ℓ_0-minimization:
 $$\hat{x} = \arg \min_{x \in \mathbb{R}^N} \|x\|_0$$
 Subject to:
 $$y = \Phi x$$

- ℓ_1-minimization:
 $$\hat{x} = \arg \min_{x \in \mathbb{R}^N} \|x\|_1$$
 Subject to:
 $$y = \Phi x$$

If Φ satisfies the RIP, then ℓ_0 and ℓ_1 are equivalent!

[Donoho; Candès, Romberg, Tao - 2004]
Why ℓ_1-Minimization Works

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \|x\|_1$$

s.t. $y = \Phi x$

$$\{x' : \Phi x' = y\}$$
Suppose we observe $y = \Phi x + e$, where $\|e\|_2 \leq \epsilon$

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \|x\|_1$$

s.t. $\|y - \Phi x\|_2 \leq \epsilon$

$$\|\hat{x} - x\|_2 \leq C_0 \epsilon$$

Similar approaches can handle Gaussian noise added to either the signal or the measurements.
Sparse Recovery: Non-sparse Signals

In practice, x may not be exactly S-sparse

$$
\hat{x} = \arg \min_{x \in \mathbb{R}^N} \|x\|_1
$$

s.t. \quad \|y - \Phi x\|_2 \leq \epsilon

$$
\|\hat{x} - x\|_2 \leq C_0 \epsilon + C_1 \frac{\|x - x_S\|_1}{\sqrt{S}}
$$
Greedy Algorithms: Key Idea

If we can determine $\Lambda = \text{supp}(x)$, then the problem becomes over-determined.

In the absence of noise,

$$\Phi_\Lambda^\dagger y = (\Phi_\Lambda^T \Phi_\Lambda)^{-1} \Phi_\Lambda^T y$$

$$= (\Phi_\Lambda^T \Phi_\Lambda)^{-1} \Phi_\Lambda^T \Phi_\Lambda x$$

$$= x$$
Matching Pursuit

Select one index at a time using a simple proxy for \(x \)

\[
p = \Phi^T y
\]

\[
j^* = \arg \max_j |p_j|
\]

If \(\Phi \) satisfies the RIP of order \(\|u \pm v\|_0 \), then

\[
|\langle \Phi u, \Phi v \rangle - \langle u, v \rangle| \leq \delta \|u\|_2 \|v\|_2
\]

Set \(u = x \) and \(v = e_j \)

\[
|p_j - x_j| \leq \delta \|x\|_2
\]
Matching Pursuit

Obtain initial estimate of x

\[x^{(1)} = p_{j^*} e_{j^*} \]

Update proxy and iterate

\[p = \Phi^T (y - \Phi x^{(j-1)}) \]
\[j^* = \arg \max_j |p_j| \]
\[x^{(j)} = x^{(j-1)} + p_{j^*} e_{j^*} \]
Iterative Hard Thresholding (IHT)

\[x^{(j)} = H_S \left(x^{(j-1)} + \mu \Phi^T \left(y - \Phi x^{(j-1)} \right) \right) \]

RIP guarantees convergence and accurate/stable recovery

[Blumensath and Davies - 2008]
Orthogonal Matching Pursuit

Replace $x^{(j)} = x^{(j-1)} + p_{j^*} e_{j^*}$ with

$$x^{(j)} = \arg\min_x \|y - \Phi_\Lambda x\|_2$$

where Λ is the set of indices selected up to iteration j

$$j^* = \arg\max_j |\langle Py, P\Phi_j \rangle|$$

Projection onto $\mathcal{R}(\Phi_\Lambda)$

$$P = I - \Phi_\Lambda \Phi_\Lambda^\dagger$$

$$P\Phi_\Lambda = 0 \quad \Rightarrow \quad P\Phi x = P\Phi x_{\Lambda^c}$$
Interference Cancellation

If Φ satisfies the RIP of order S, then

$$\left(1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \leq \|P\Phi x\|_2^2 \leq (1 + \delta) \|x\|_2^2$$

for all x with $\|x\|_0 \leq S - |\Lambda|$ and $\text{supp}(x) \cap \Lambda = \emptyset$.

$$|\langle Py, P\Phi_j \rangle - x_j| \leq \frac{\delta}{1 - \delta} \|x_{\Lambda^c}\|_2$$

[Davenport, Boufounos, Wakin, Baraniuk - 2010]
Orthogonal Matching Pursuit

Suppose x is S-sparse and $y = \Phi x$. If Φ satisfies the RIP of order $S + 1$ with constant $\delta < 1/3\sqrt{S}$, then the j^* identified at each iteration will be a nonzero entry of x.

Exact recovery after S iterations

[Davenport and Wakin - 2010]
Extensions of OMP

- **StOMP, ROMP**
 - select many indices in each iteration
 - picking indices for which \(p_j \) is “comparable” leads to increased stability and robustness

- **CoSaMP, Subspace Pursuit, ...**
 - allow indices to be discarded
 - strongest guarantees, comparable to \(\ell_1 \)-minimization

\[
\begin{align*}
\| x - x^{(j+1)} \|_2 & \leq \frac{1}{2} \| x - x^{(j)} \|_2 + C \| e \|_2 \\
\| x - x^{(j+1)} \|_2 & \leq 2^{-j} \| x - x^{(j)} \|_2 + 2C \| e \|_2
\end{align*}
\]

[Needell and Tropp - 2010]
Beyond Recovery
Random measurements are *information scalable*

When and how can we directly solve signal processing problems directly from compressive measurements?
Compressive Radio Receivers

Example Scenario

- 300 MHz bandwidth
- 5 FM signals (12 kHz)
- TV station interference
- Acquire compressive measurements at 30 MHz (20 x undersampled)

We must simultaneously solve several problems:

\[y \xrightarrow{\text{detect signal energy}} \xrightarrow{\text{cancel known interferers}} \xrightarrow{\text{filter signals of interest}} \xrightarrow{\text{demod}} \text{baseband signals or bitstreams} \]
Energy Detection

We need to identify where in frequency the important signals are located

Compressive Estimation: correlate with projected tones

\[\hat{F}(k) = |\langle \Phi \cos(2\pi f_k t), y \rangle| \]

[Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos - 2010]
Filtering

If we have multiple signals, must be able to filter to isolate and cancel interference

\[P = I - \Phi \Psi_I (\Phi \Psi_I)\dagger \]

\(\Psi_I\) : Discrete prolate spheroidal sequences

[Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos - 2010]
We can use a phase-locked-loop (PLL) to track deviations in frequency by directly operating on compressive measurements.

We can directly demodulate signals from compressive measurements \textit{without recovery}.

[Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos - 2010]
We can use a phase-locked-loop (PLL) to track deviations in frequency by directly operating on compressive measurements.

We can directly demodulate signals from compressive measurements without recovery.

[Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos - 2010]
Compressive Domain Demodulation

CS-PLL with 20x undersampling

[Davenport, Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos - 2010]
Beyond Sparsity
Beyond Sparsity

- Not all signal models fit neatly into the “sparse” setting

- The concept of “dimension” has many incarnations
 - “degrees of freedom”
 - constraints
 - parameterizations
 - signal families

- How can we exploit these low-dimensional models?

- I will focus primarily on just a few of these
 - structured sparsity, finite-rate-of-innovation, manifolds, low-rank matrices
Structured Sparsity

- Sparse signal model captures *simplistic primary structure*

- Modern compression/processing algorithms capture *richer secondary coefficient structure*

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images
Sparse Signals

Traditional sparse models allow all possible S-dimensional subspaces
Wavelets and Tree-Sparse Signals

Model: \(S \) nonzero coefficients lie on a connected tree

[Baraniuk, Cevher, Duarte, Hegde - 2010]
Other Useful Models

- Clustered coefficients
 - tree sparse
 - block sparse
 - Ising models

- Dispersed coefficients
 - spike trains
 - pulse trains

[Baraniuk, Cevher, Duarte, Hegde - 2010]
Finite Rate of Innovation

Continuous-time notion of sparsity: “rate of innovation”

Examples:

Rate of innovation:
Expected number of innovations per second

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]
Sampling Signals with FROI

We would like to obtain samples of the form

\[y[m] = \phi(t) \ast x(t) |_{t=mT_s} = \langle \phi(mT_s - t), x(t) \rangle \]

where we sample at the *rate of innovation*.

Requires *careful construction of sampling kernel* \(\phi(t) \).

Drawbacks:
- need to repeat process for each signal model
- stability

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]
Manifolds

- S-dimensional parameter $\theta \in \Theta$ captures the degrees of freedom of signal

- Signal class forms an S-dimensional manifold
 - rotations, translations
 - robot configuration spaces
 - signal with unknown translation
 - sinusoid of unknown frequency
 - faces
 - handwritten digits
 - speech
 - ...

-\mathbb{R}^N
Random Projections

- For sparse signals, random projections preserve geometry

- What about manifolds?
Whitney’s Embedding Theorem (1936)

\[\mathbb{R}^N \rightarrow \mathbb{R}^M \]

-\(S \)-dimensional smooth compact

\(M > 2S \) random projections suffice to embed the manifold...

But very unstable!
Stable Manifold Embedding

Theorem

Let $\mathcal{M} \subseteq \mathbb{R}^N$ be a compact S-dimensional manifold with
- condition number $1/\tau$ (curvature, self-avoiding)
- volume V

Let Φ be a random $M \times N$ projection with

$$M = O(S \log(NV/\tau))$$

Then with high probability, and any $x_1, x_2 \in \mathcal{M}$

$$1 - \delta \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq 1 + \delta$$

[Baraniuk and Wakin - 2009]
Stable Manifold Embedding

Sketch of proof

- construct a sampling of points
 - on manifold at fine resolution
 - from local tangent spaces
- apply JL lemma to these points
 \[M = O(S \log(NV/\tau)) \]
- extend to entire manifold

Implications

Nonadaptive (even random) linear projections can efficiently capture & preserve structure of manifold

See also: Indyk and Naor, Agarwal et al., Dasgupta and Freund

[Baraniuk and Wakin - 2009]
Compressive Sensing with Manifolds

- Same sensing protocols/devices
- Different reconstruction models
- Measurement rate depends on manifold dimension
- Stable embedding guarantees robust recovery
Low-Rank Matrices

Singular value decomposition:

\[X = U \Sigma V^* \]

\[\approx NR \ll N^2 \]
degrees of freedom
Matrix Completion

- Collaborative filtering ("Netflix problem")
- How many samples will we need?
 \[M \geq CNR \]
- Coupon collector problem
 \[M \geq N \log N \]
Low-Rank Matrix Recovery

Given:
- an $N \times N$ matrix X of rank R
- linear measurements $y = A(X)$

How can we recover X?

\[
\hat{X} = \arg \inf_{X: A(X) = y} \text{rank}(X)
\]

Can we replace this with something computationally feasible?
Nuclear Norm Minimization

Convex relaxation!

Replace $\text{rank}(X)$ with $\|X\|_* = \sum_{j=1}^{N} |\sigma_j|$

The “nuclear norm” is just the ℓ_1-norm of the vector of singular values

$\hat{X} = \underset{X: A(X) = y}{\arg\inf} \text{rank}(X)$

[Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]
Convex relaxation!

Replace \(\text{rank}(X) \) with \(\|X\|_* = \sum_{j=1}^{N} |\sigma_j| \)

The “nuclear norm” is just the \(\ell_1 \)-norm of the vector of singular values

\[
\hat{X} = \arg \inf_{X: A(X) = y} \|X\|_*
\]

\(M = O(NR \log N) \)

[Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]
Conclusions
Conclusions

• The theory of compressive sensing allows for new sensor designs, but requires new techniques for signal recovery

• We can still use compressive sensing even when signal recovery is not our goal

• “Conciseness” has many incarnations
 - structured sparsity
 - finite rate of innovation, manifold, parametric models
 - low-rank matrices

• The theory/techniques from compressive sensing can be tremendously useful in a variety of other contexts