On The Fundamental Limits of Adaptive Sensing

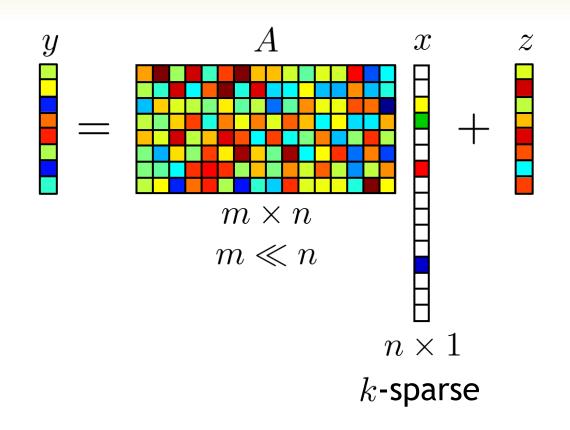
Mark A. Davenport

Stanford University Department of Statistics



Joint work with Ery Arias-Castro and Emmanuel Candès

Compressive Sensing



When (and how well) can we estimate x from the measurements y?

How Well Can We Estimate x?

$$y = Ax + z$$
 $z \sim \mathcal{N}(0, \sigma^2 I)$

Suppose that A has unit-norm rows.

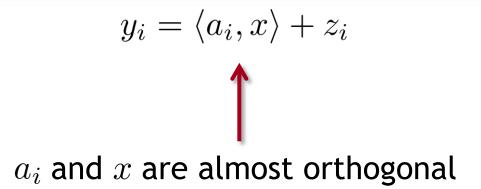
There exist matrices A such that for any x with $||x||_0 \le k$

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \le C \frac{n}{m} k \sigma^2 \log n.$$

For *any* choice of A and *any* possible recovery algorithm, there exists an x with $||x||_0 \le k$ such that

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge C' \frac{n}{m} k \sigma^2 \log(n/k).$$

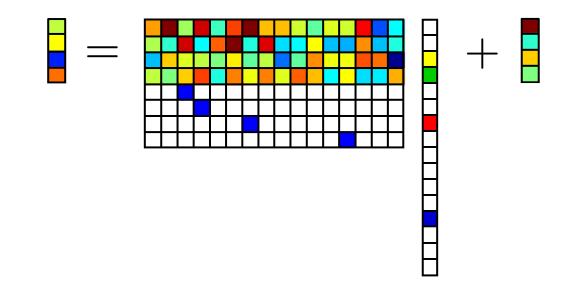
Room For Improvement?



- We are using most of our "sensing power" to sense entries that aren't even there!
- Tremendous loss in signal-to-noise ratio (SNR)
- It's hard to imagine any way to avoid this...

Adaptive Sensing

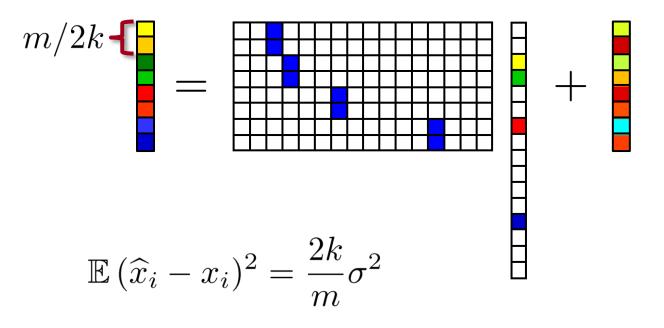
Think of sensing as a game of 20 questions



Simple strategy: Use m/2 measurements to find the support, and the remainder to estimate the values.

Thought Experiment

Suppose that after m/2 measurements we have perfectly estimated the support.



 $\mathbb{E} \|\widehat{x} - x\|_2^2 = \frac{2k}{m} k\sigma^2 \ll \frac{n}{m} k\sigma^2 \log n$

Does Adaptivity *Really* Help?

Sometimes...

- Noise-free measurements, but non-sparse signal
 - adaptivity doesn't help if you want a uniform guarantee
 - probabilistic adaptive algorithms can reduce the required number of measurements from $O(k\log(n/k))$ to $O(k\log\log(n/k))$ [Indyk et al. 2011]
- Noisy setting
 - distilled sensing [Haupt et al. 2007, 2010]
 - adaptivity can reduce the estimation error to

?

Which Is It?

Suppose we have a budget of m measurements of the form $y_i = \langle a_i, x \rangle + z_i$ where $||a_i||_2 = 1$ and $z_i \sim \mathcal{N}(0, \sigma^2)$

The vector a_i can have an arbitrary dependence on the measurement history, i.e., $(a_1, y_1), \ldots, (a_{i-1}, y_{i-1})$

Theorem

There exist x with $||x||_0 \le k$ such that for *any* adaptive measurement strategy and *any* recovery procedure \hat{x} ,

$$\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C \frac{n}{m} k \sigma^2.$$

Thus, in general, adaptivity does *not* significantly help!

[Arias-Castro, Candès, and Davenport - 2011]

Proof Strategy

- Step 1: Consider sparse signals with nonzeros of amplitude $\mu \approx \sigma \sqrt{n/m}$
- Step 2: Show that if given a budget of *m* measurements, you cannot detect the support very well
- Step 3: Immediately translate this into a lower bound on the MSE

To make things simpler, we will consider a Bernoulli prior $\pi(x)$ instead of a uniform k-sparse prior:

$$x_j = \begin{cases} 0 & \text{with probability } 1 - k/n \\ \mu > 0 & \text{with probability } k/n \end{cases}$$

Proof of Main Result

Let $S = \{j : x_j \neq 0\}$ and set $\sigma^2 = 1$ For any estimator \hat{x} , define $\hat{S} := \{j : |\hat{x}_j| \ge \mu/2\}$ Whenever $j \in S \setminus \hat{S}$ or $j \in \hat{S} \setminus S$, $|\hat{x}_j - x_j| \ge \mu/2$

$$\|\widehat{x} - x\|_{2}^{2} \ge \frac{\mu^{2}}{4} |S \setminus \widehat{S}| + \frac{\mu^{2}}{4} |\widehat{S} \setminus S| = \frac{\mu^{2}}{4} |\widehat{S} \Delta S|$$

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} \,|\widehat{S}\Delta S$$

Proof of Main Result

Lemma Under the Bernoulli prior, *any* estimate \widehat{S} satisfies $\mathbb{E} |\widehat{S}\Delta S| \ge k \left(1 - \frac{\mu}{2} \sqrt{\frac{m}{n}}\right).$

Thus,
$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} |\widehat{S}\Delta S|$$

$$\ge k \cdot \frac{\mu^2}{4} \left(1 - \frac{\mu}{2}\sqrt{\frac{m}{n}}\right)$$

Plug in $\mu = \frac{8}{3}\sqrt{\frac{n}{m}}$ and this reduces to

$$\mathbb{E} \|\widehat{x} - x\|_{2}^{2} \ge \frac{4}{27} \cdot \frac{kn}{m} \ge \frac{1}{7} \cdot \frac{kn}{m}$$

Key Ideas in Proof of Lemma

$$\mathbb{P}_{0,j}(y_1,\ldots,y_m) = \mathbb{P}(y_1,\ldots,y_m | x_j = 0)$$
$$\mathbb{P}_{1,j}(y_1,\ldots,y_m) = \mathbb{P}(y_1,\ldots,y_m | x_j = \mu)$$

$$\mathbb{E} |\widehat{S}\Delta S| \ge \frac{k}{n} \sum_{j} \left(1 - \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}\right)$$
$$\ge k - \frac{k}{\sqrt{n}} \sqrt{\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2}$$

$$\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 \le \frac{\mu^2}{4} m \implies \mathbb{E} |\widehat{S}\Delta S| \ge k \left(1 - \frac{\mu}{2}\sqrt{\frac{m}{n}}\right)$$

Key Ideas in Proof of Lemma

Pinsker's Inequality

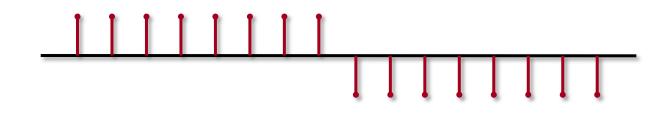
$$\|\mathbb{P} - \mathbb{Q}\|_{\mathrm{TV}} \le \sqrt{K(\mathbb{P}, \mathbb{Q})/2}$$

$$\begin{aligned} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 &\leq \frac{\pi_0}{2} K(\mathbb{P}_{0,j}, \mathbb{P}_{1,j}) + \frac{\pi_1}{2} K(\mathbb{P}_{1,j}, \mathbb{P}_{0,j}) \\ &\leq \frac{\mu^2}{4} \sum_i \mathbb{E} a_{i,j}^2 \end{aligned}$$

$$\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 \le \frac{\mu^2}{4} \sum_{i,j} \mathbb{E} a_{i,j}^2 = \frac{\mu^2}{4} m$$

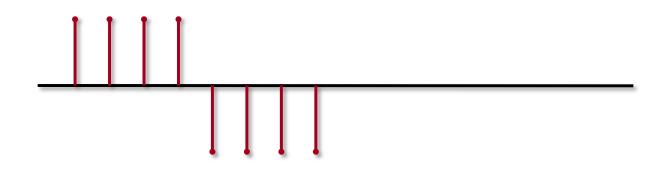
Suppose that k = 1 and that $x_{j^*} = \mu$

- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log n$ times, return support



Suppose that k = 1 and that $x_{j^*} = \mu$

- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log n$ times, return support



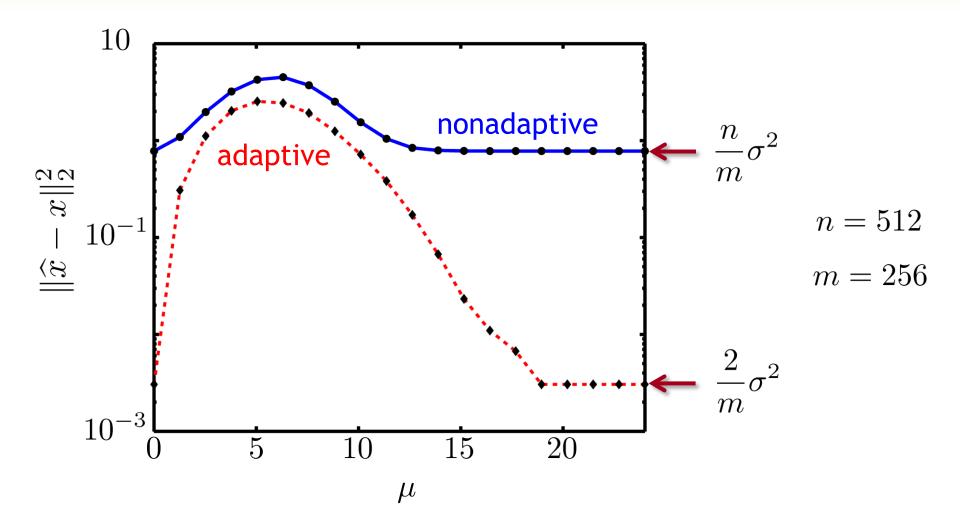
Suppose that k = 1 and that $x_{j^*} = \mu$

- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log n$ times, return support

Suppose that k = 1 and that $x_{j^*} = \mu$

- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log n$ times, return support

Experimental Results



[Arias-Castro, Candès, and Davenport - 2011]

Conclusions

- Surprisingly, adaptive algorithms, no matter how complex, cannot in general significantly improve over seemingly naively simple nonadaptive strategies
- Adaptivity might still be very useful in practice
 - how large does μ need to be to transition from the regime where adaptivity doesn't help to where it does?

$$\frac{\mu}{\sigma} \ge C\sqrt{(n/m)\log\log n}$$

- improved practical algorithms that work well simultaneously for both large and small values of $\,\mu$
- practical architectures and algorithms for implementing adaptive measurements in real-world settings