

Compressive Sensing

Background

Directly acquire a reduced set of low-dimensional compressive measurements

Nonlinear recovery via optimization-based, iterative, or greedy algorithms

Basis Pursuit (BP)

$\widehat{\alpha} = \arg\min$	$\ \ lpha \ _1$
lpha	
s.t.	$y = \Phi \Psi \alpha$

Basis Pursuit De-Noising (BPDN)		
$\widehat{\alpha} = \arg \min$	$\ \alpha\ _1$	
$\overset{\alpha}{\mathrm{s.t.}}$	$\ y - \Phi \Psi \alpha\ _2 \le \epsilon$	

The *restricted isometry property* (RIP) ensures that Φ captures the information in the signal

 $(1-\delta)\|\alpha\|_{2}^{2} \le \|\Phi\Psi\alpha\|_{2}^{2} \le (1+\delta)\|\alpha\|_{2}^{2} \quad \forall \alpha \quad \|\alpha\|_{0} \le K$

SubGaussian Φ satisfy the RIP if $M = O(K \log(N/K))$.

Does randomness provide any other benefits?

Compressive Signal Processing

Random measurements are *information scalable*

In such scenarios, measurements are often corrupted by *interference* and *structured noise*

 $y = \Phi x_S + \Phi x_I$

 $y = \Phi x_S + \Omega e$

Seek to remove contribution of Φx_I or Ωe to y before reconstructing x_S .

Corruption, Justice, and Democracy in Compressive Sensing

Mark A. Davenport, Jason N. Laska, Petros T. Boufounos, Michael B. Wakin, and Richard G. Baraniuk

Corruption

Interference Cancellation

Assume $x_S \in \mathcal{X}_S$ and $x_I \in \mathcal{X}_I$, where $\langle x_I, x_S \rangle = 0$ for all $x_S \in \mathcal{X}_S$, $x_I \in \mathcal{X}_I$. Also assume $\Psi = I$. Design $M \times M$ matrix P such that

 $||P(\Phi x_I)||_2 \approx 0$ and $||P(\Phi x_S)||_2 \approx ||\Phi x_S||_2$

Note: Not always possible Depends on structure of \mathcal{X}_S and \mathcal{X}_I

Subspace Cancellation

for all x such that $||x||_0 \leq 2K_S$ and $\operatorname{supp}(x) \cap J = \emptyset$.

Proof exploits two facts:

$$\begin{aligned} \|\Phi x\|_{2}^{2} &= \|P\Phi x\|_{2}^{2} + \|(I-P)\Phi x\|_{2}^{2} \\ \frac{\|(I-P)\Phi x\|_{2}}{\|\Phi x\|_{2}} &= \frac{\langle (I-P)\Phi x, \Phi x \rangle}{\|(I-P)\Phi x\|_{2}\|\Phi x\|_{2}} \leq \frac{\delta}{1+\delta} \end{aligned}$$

Implications

dsp.rice.edu/cs

Corrupted Measurements

To analyze Justice Pursuit, we must study the properties of the matrix $[\Phi\Omega]$.

Theorem: If Φ is a subGaussian matrix with $M = O\left(\left(K + \kappa\right)\log\left(\frac{N + M}{K + \kappa}\right)\right)$ then $[\Phi\Omega]$ satisfies the RIP of order $(K + \kappa)$ with

probability at least $1 - 3e^{-CM}$.

Proof follows from $\| [\Phi \Omega] u \|_{2}^{2} = \| \Phi x \|_{2}^{2} + e^{T} \Omega^{T} \Phi x + \| e \|_{2}^{2}$ and the facts that with high probability $-\delta \|e\|_2 \|x\|_2 \le e^T \Omega^T \Phi x \le \delta \|e\|_2 \|x\|_2$ $(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2$

Experiments

Compare JP with BPDN (N = 1024, K = 10) If M is sufficiently large, JP achieves exact recovery

Democracy

Corruption meets Justice

The key results of subspace cancellation and justice combine to provide a simple proof that random matrices are *democratic*.

A matrix is democratic if we can remove D arbitrary (adversarially selected) rows and retain the RIP.

$$M = O\left((K+D)\log\left(\frac{N+M}{K+D}\right)\right)$$

then $\left[\Phi I\right]$ satisfies the RIP of order (K+D).

Construct *P* to cancel interference from columns indexed by J, where J corresponds to a set of D rows.

Since Φ will satisfy the RIP for any possible choice of J, this establishes that Φ is democratic.

Democracy in Action

When measurements are quantized using a finiterange quantizer, some will *saturate*.

Democracy justifies a strategy of simply *rejecting* saturated measurements.

In fact, simulations show this method out-performs the traditional approach, ^w achieving optimal performance at nonzero saturation rates.

References

- M.A. Davenport, P.T. Boufounos, M.B. Wakin, and R.G. Baraniuk, "Signal processing with compressive measurements," to appear in *IEEE J. Selected Topics in Signal Processing*, 2010.
- M.A. Davenport and M.B. Wakin, "Analysis of Orthogonal Matching Pursuit using the restricted isometry property," Preprint, 2009.
- J.N. Laska, M.A. Davenport, and R.G. Baraniuk, "Exact signal recovery from sparsely corrupted measurements through the pursuit of justice," Asilomar Conf. Signals, Systems, and Computers, 2009.
- J.N. Laska, P.T. Boufounos, M.A. Davenport, and R.G. Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing," Preprint, 2009.
- M.A. Davenport, J.N. Laska, P.T. Boufounos, and R.G. Baraniuk, "A simple proof that random matrices are democratic," Rice ECE Tech. Report TREE 0906, 2009.