Lower Bounds for Quantized Matrix Completion

Mark A. Davenport

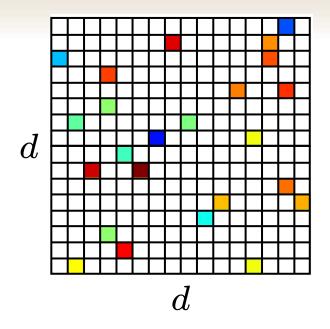
School of Electrical and Computer Engineering Georgia Institute of Technology

Mary Wootters

Yaniv Plan

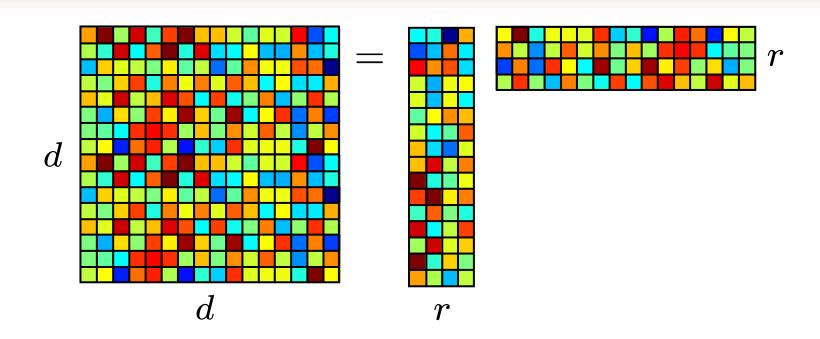
Ewout van den Berg

Matrix Completion



- When is it possible to recover the original matrix?
- How can we do this efficiently?
- How many samples will we need?

Low-Rank Matrices



Singular value decomposition:

$$M = U\Sigma V^*$$

$$pprox dr \ll d^2$$
 degrees of freedom

Low-Rank Matrix Recovery

Given:

- a $d \times d$ matrix M of rank r
- $\bullet \ \ {\rm samples} \ {\rm of} \ M \ {\rm on} \ {\rm the} \ {\rm set} \quad : \ Y=M$

How can we recover M?

$$\widehat{M} = \underset{X:X}{\operatorname{arg inf}} \operatorname{rank}(X)$$

Can we replace this with something computationally feasible?

Nuclear Norm Minimization

Convex relaxation!

Replace
$$\operatorname{rank}(X)$$
 with $\|X\|_* = \sum_{j=1}^d |\sigma_j|$

$$\widehat{M} = \underset{X:X}{\operatorname{arg inf}} \|X\|_*$$

If $| \cdot | = O(r d \log d)$, this procedure can recover M!

Applications

- Collaborative Filtering (aka the "Netflix Problem")
- Recovery of incomplete survey data
- Analysis of voting data
- Sensor localization
- Quantum state tomography

• ...

Matrix Completion in Practice

Noise

$$Y = (M + Z)$$

Quantization

- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure

1-Bit Matrix Completion

Extreme case

$$Y = sign(M)$$

Claim: Recovering M from Y is impossible!

No matter how many samples we obtain, all we can learn is whether $\lambda>0$ or $\lambda<0$

Is There Any Hope?

If we consider a noisy version of the problem, recovery becomes feasible!

$$Y = sign(M + Z)$$

$$M + Z = \begin{bmatrix} \lambda + Z_{1,1} & \lambda + Z_{1,2} & \lambda + Z_{1,3} & \lambda + Z_{1,4} \\ \lambda + Z_{2,1} & \lambda + Z_{2,2} & \lambda + Z_{2,3} & \lambda + Z_{2,4} \\ \lambda + Z_{3,1} & \lambda + Z_{3,2} & \lambda + Z_{3,3} & \lambda + Z_{3,4} \\ \lambda + Z_{4,1} & \lambda + Z_{4,2} & \lambda + Z_{4,3} & \lambda + Z_{4,4} \end{bmatrix}$$

Fraction of positive/negative observations tells us something about λ

Example of the power of *dithering*

Observation Model

For $(i, j) \in$ we observe

$$Y_{i,j} = \begin{cases} +1 & \text{with probability } f(M_{i,j}) \\ -1 & \text{with probability } 1 - f(M_{i,j}) \end{cases}$$

If f behaves like a CDF, then this is equivalent to

$$Y_{i,j} = \operatorname{sign}(M_{i,j} + Z_{i,j})$$

where $Z_{i,j}$ is drawn according to a suitable distribution

We will assume that is drawn uniformly at random

Examples

Logistic regression / Logistic noise

$$f(x) = \frac{e^x}{1 + e^x}$$

 $Z_{i,j} \sim ext{logistic distribution}$

Probit regression / Gaussian noise

$$f(x) = \Phi(x/\sigma)$$

$$Z_{i,j} \sim \mathcal{N}(0,\sigma^2)$$

Maximum Likelihood Estimation

Log-likelihood function:

$$F(X) = \sum_{(i,j)\in +} \log(f(X_{i,j})) + \sum_{(i,j)\in -} \log(1 - f(X_{i,j}))$$

$$\widehat{M} = \operatorname*{arg\,max}_X F(X)$$
s.t.
$$\frac{1}{d\alpha} ||X||_* \le \sqrt{r}$$

$$||X||_{\infty} \le \alpha$$

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that $\frac{1}{d\alpha}||M||_* \leq \sqrt{r}$ and $||M||_\infty \leq \alpha$. If is chosen at random with $\mathbb{E}||=m>d\log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

where

$$L_{\alpha} := \sup_{|x| \le \alpha} \frac{|f'(x)|}{f(x)(1 - f(x))} \qquad \beta_{\alpha} := \sup_{|x| \le \alpha} \frac{f(x)(1 - f(x))}{(f'(x))^2}$$

Is this bound tight?

Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that $\frac{1}{d\alpha}||M||_* \leq \sqrt{r}$ and $||M||_\infty \leq \alpha$. If is chosen at random with $\mathbb{E}|\ |=m>d\log d$, then with high probability

$$\frac{1}{d^2} \|\widehat{M} - M\|_F^2 \le C\alpha L_\alpha \beta_\alpha \sqrt{\frac{rd}{m}}$$

Theorem (Lower bound on any estimator)

For any recovery algorithm \widehat{M} there exist M satisfying the assumptions above such that for any set $| \cdot \cdot | = m$, we have (under mild technical assumptions) that

$$\mathbb{E}\left[\frac{1}{d^2}\|\widehat{M} - M\|_F^2\right] \ge c\alpha\sqrt{\beta_{\frac{3}{4}\alpha}}\sqrt{\frac{rd}{m}}$$

Proof Outline

- ullet Construct a set $\mathcal X$ of low-rank, bounded matrices with the properties that
 - $|\mathcal{X}|$ is large
 - For any $X_i, X_j \in \mathcal{X}$, $\|X_i X_j\|_F$ is relatively large
- Apply Fano's inequality to show that given observations of a particular X_i , there is a lower bound on how well we can correctly identify the chosen X_i
- If we cannot identify the chosen X_i , then we cannot estimate it very accurately either
- Randomized construction of ${\mathcal X}$

Conclusions

- Lower bounds can also be stated for
 - How well can we recover low-rank matrices in the presence of Gaussian noise?
 - How well can we recover the *distribution* f(M)
- Quantized (especially 1-bit) matrix completion is difficult
 - Naïve approaches don't work well
 - We have algorithms that are near-optimal
 - Seems to work well in practice

Thank You!