Compressive Imaging: Theory and Practice

Mark Davenport

Richard Baraniuk, Kevin Kelly

Digital Revolution

Digital Acquisition

• Foundation: *Shannon sampling theorem*

- Time: A/D converters, receivers, ...
- Space: cameras, imaging systems, ...
- High-frequency content = **lots of samples...**

Sparsity

 Many signals can be *compressed* in some representation/basis (Fourier, wavelets, ...)

Npixels

N

signal

 $K \ll N$ large wavelet coefficients

 $K \ll N$ large Gabor coefficients

Sensing by Sampling

- Standard paradigm for digital data acquisition
 - *sample* data (ADC, digital camera, ...)
 - compress data (signal-dependent, nonlinear)

Sample-and-compress paradigm is *wasteful*

samples cost \$\$\$ and/or time

From Samples to Measurements

- Shannon was a *pessimist*
 - worst case bound for any bandlimited signal

Compressive sensing [Candes, Romberg, Tao; Donoho – 2004]

- generalize "samples" to linear "measurements"
- incorporate prior knowledge about the signal (sparsity)
- **Goal:** Take as few measurements as possible while retaining the ability to accurately recover the signal from the measurements.

Compressive Sensing

Replace samples with *linear measurements*

 $y = \Phi x$

Sparsity

• For now: Assume $\Psi=I$

Compressive Sensing

Replace samples with *linear measurements*

Restricted Isometry Property (RIP)

- Preserve the structure of sparse signals
- For all *K*-sparse x_1 and x_2

RIP Matrix: Option 1

• Random Fourier submatrix:

• If the rows are selected at random with

 $M \ge CK \log^4(N)$

then with high probability, Φ will satisfy the RIP [Candes and Tao]

RIP Matrix: Option 2

- Pick Φ at random
 - i.i.d. Gaussian
 - i.i.d. Bernouli
 - any bounded random variable

 $M \ge CK \log(N/K)$

- Proof relies on concentration of measure [Baraniuk, Davenport, DeVore, Wakin]
 - fix a 2K-dimensional subspace
 - pick a finite sampling of points on the sphere
 - repeat for all $\binom{N}{2K}$ subspaces
 - argue that Φ preserves the norm of each point
 - extend from point set to entire sphere

Universality

Random matrix will work with *any* fixed orthonormal basis (with high probability)

• Reconstruction/decoding:

• Reconstruction/decoding: (ill-posed inverse problem)

given
$$y = \Phi x$$

find x

•
$$L_2: \widehat{x} = \arg\min_{y=\Phi x} ||x||_2 \longrightarrow \widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$

• Fast, but *wrong*

 Solution is *almost never* sparse

• Reconstruction/decoding: (ill-posed inverse problem)

•
$$L_2$$
: $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_2$

•
$$L_0$$
: $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_0$

given
$$y = \Phi x$$

find x

number of nonzero entries

• Correct, but *slow* (NP-Hard)

• Reconstruction/decoding: (ill-posed inverse problem)

•
$$L_2$$
: $\widehat{x} = \arg\min_{y=\Phi x} \|x\|_2$

- L_0 : $\widehat{x} = \arg\min_{y=\Phi x} ||x||_0$
- L_1 : $\hat{x} = \arg\min_{y=\Phi x} \|x\|_1$ — linear program
- If Φ satisfies the RIP, L_1 gives same answer as L_0

given
$$y = \Phi x$$

find x

Why **L**₁ Works

Recovery in Noise

What about noise, or robustness to non-sparse signals?

$$y = \Phi x + e$$

$$\widehat{x} = \underset{\|y - \Phi x'\|_2 \le \epsilon}{\arg\min} \|x'\|_1$$

$$\|\widehat{x} - x\|_2 \le C_0 \|e\|_2 + C_1 \frac{\|x - x_K\|_1}{\sqrt{K}}$$

Compressive Sensing Hallmarks

• Asymmetrical

- no processing at encoder
- significant processing at decoder
- Universal
 - random projections / hardware can be designed and used without prior knowledge of the sparsifying basis

• Democratic

- each measurement carries the same amount of information
- simple encoding
- robust to measurement loss and quantization

Democracy and Sparse Noise

Justice Pursuit

$$\widehat{u} = \underset{u}{\arg\min} \|u\|_{1}$$

s.t. $y = [\Phi \ I] u$

Theorem: If Φ is a subGaussian matrix with $M = O\left(\left(K + \kappa\right)\log\left(\frac{N+M}{K+\kappa}\right)\right)$ then $[\Phi \ I]$ satisfies the RIP of order $(K + \kappa)$ with probability at least $1 - 3e^{-CM}$.

[Laska, Davenport, Baraniuk]

Justice Pursuit

• We can recover sparse signals *exactly* in the presence of *unbounded* sparse noise

Justice and Democracy

- The fact that $[\Phi \ I]$ satisfies the RIP also implies that we can delete arbitrary rows of Φ and retain the RIP
- Random matrices satisfy a very strong adversarial form of democracy

Compressive Imaging in Practice

- Tomography in medical imaging
 - each projection gives you a set of Fourier coefficients
 - fewer measurements mean
 - more patients
 - sharper images
 - less radiation exposure
- Conventional imaging at non-visible wavelengths
 - cannot always build sensor arrays
 - raster scan takes time

1 Chip DLP™ Projection

TI Digital Micromirror Device

"Single-Pixel" Camera

Image Acquisition

Original

 16384 Pixels
 16384 Pixels

 1600 Measurements
 3300 Measurements

 (10%)
 (20%)

65536 Pixels 1300 Measurements (2%)

65536 Pixels 3300 Measurements (5%)

World's First Photograph

- 1826, Joseph Niepce
- Farm buildings and sky
- 8 hour exposure

"Single-Pixel" Camera

Low-Light Imaging with PMT

Blue

256 x 256 image with 10:1 compression

IR Imaging

Canvas board:

- "IR" written using charcoal pencil
- covered by a layer of blue oil paint
- scene is illuminated by a 150 watt halogen lamp

1%

2%

5%

100%

Reconstruction of 256 × 256 pixel image

IR Imaging

Raster scans: Light from only one pixel

Compressive sensing: Light from half the pixels

 256×256

Hyperspectral Imaging

Sum of all bands

Real target

Hyperspectral Imaging

THz Imaging

32 x 32 PCB masks

Object mask 300 measurements

600 measurements

THz Amplitude

THz Phase

Mittleman Group, Rice University

THz Imaging 2: Sampling in Fourier

Mittleman Group, Rice University

Conclusions

Compressive sensing

- exploits signal sparsity/compressibility
- integrates sensing with compression
- enables new kinds of imaging/sensing devices
- Near/Medium-term applications
 - tomography/medical imaging
 - cameras and imagers where CCDs and CMOS arrays are blind
 - potential strategy to boost time-resolution in many imaging settings
 - electron microscopy?

dsp.rice.edu/cs