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Digital Revolution



Digital Acquisition

• Foundation:  Shannon sampling theorem

• Time: A/D converters, receivers, …

• Space: cameras, imaging systems, …

• High-frequency content = lots of samples…

Must sample at 2x highest frequency 
of the signal  (Nyquist rate)



Sparsity
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• Many signals can be compressed in some 
representation/basis (Fourier, wavelets, …)



Sensing by Sampling

• Standard paradigm for digital data acquisition

– sample data (ADC, digital camera, …) 

– compress data   (signal-dependent, nonlinear)

• Sample-and-compress paradigm is wasteful

– samples cost $$$ and/or time

JPEG
MPEG

…

sample compress transmit/store

receive decompress



From Samples to Measurements

• Shannon was a pessimist

– worst case bound for 
any bandlimited signal

• Compressive sensing 
[Candes, Romberg, Tao; Donoho – 2004] 

– generalize “samples” to linear “measurements” 

– incorporate prior knowledge about the signal (sparsity)

Goal: Take as few measurements as possible while 
retaining the ability to accurately recover the signal 
from the measurements.



Replace samples with linear measurements

Compressive Sensing

measurements
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Sparsity

• For now: Assume 

nonzero
entries



Replace samples with linear measurements
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Restricted Isometry Property (RIP)

• Preserve the structure of sparse signals

• For all K-sparse and 

K-dimensional subspaces



• Random Fourier submatrix:

• If the rows are selected at random with

then with high probability,      will satisfy the RIP
[Candes and Tao]

RIP Matrix: Option 1



RIP Matrix: Option 2

• Pick     at random

– i.i.d. Gaussian

– i.i.d. Bernouli

– any bounded random variable

• Proof relies on concentration of measure 
[Baraniuk, Davenport, DeVore, Wakin]

– fix a       -dimensional subspace

– pick a finite sampling of points on the sphere

– repeat for all       subspaces 

– argue that     preserves the norm of each point

– extend from point set to entire sphere



• Random matrix will work with any fixed orthonormal
basis (with high probability)

Universality



• Reconstruction/decoding:

Signal Recovery

given             
find  
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• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• Fast, but wrong

• Solution is
almost never sparse

Signal Recovery

given             
find  



• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• L0:

• Correct, but slow (NP-Hard)

Signal Recovery

given             
find  

number of
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entries



• Reconstruction/decoding:
(ill-posed inverse problem)

• L2:

• L0:

• L1:

• If      satisfies the RIP, L1 gives same answer as L0

Signal Recovery

given             
find  

linear program



Why L1 Works



• What about noise, or robustness to non-sparse 
signals?

Recovery in Noise



Compressive Sensing Hallmarks

• Asymmetrical 

– no processing at encoder

– significant processing at decoder

• Universal 

– random projections / hardware can be designed and 
used without prior knowledge of the sparsifying basis 

• Democratic

– each measurement carries the same amount of 
information

– simple encoding

– robust to measurement loss and quantization



Democracy and Sparse Noise

corrupted
measurements



Justice Pursuit

Theorem: If    is a subGaussian matrix with

then        satisfies the RIP of order            with 
probability at least               . 

[Laska, Davenport, Baraniuk]



Justice Pursuit

Fixed Fixed

• We can recover sparse signals exactly in the 
presence of unbounded sparse noise



Justice and Democracy

• The fact that          satisfies the RIP also implies that 
we can delete arbitrary rows of     and retain the RIP

• Random matrices satisfy a very strong adversarial
form of democracy  



Compressive Imaging in Practice

• Tomography in medical imaging

– each projection gives you a set of Fourier coefficients

– fewer measurements mean

 more patients

 sharper images

 less radiation exposure

• Conventional imaging at non-visible wavelengths

– cannot always build sensor arrays

– raster scan takes time





TI Digital Micromirror Device



“Single-Pixel” Camera

© MIT Tech Review
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Image Acquisition



World’s First Photograph

• 1826, Joseph Niepce

• Farm buildings and sky 

• 8 hour exposure



“Single-Pixel” Camera

© MIT Tech Review
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Low-Light Imaging with PMT

True color low-light imaging:

256 x 256 image with 10:1 
compression

Color
Filter
Wheel



Reconstruction of 256×256 pixel image

1%              2%

5%              10%           100%

Canvas board:

• “IR” written using charcoal 
pencil
• covered by a layer of blue oil 
paint 
• scene is illuminated by a 150 
watt halogen lamp

IR Imaging



32×32             128×128          256×256

256×256

IR Imaging

Raster scans: Light from only one pixel

Compressive sensing: 

Light from half the pixels



Hyperspectral Imaging

Real targetSum of all bands



Hyperspectral Imaging



THz Imaging

Object mask 300
measurements

600
measurements

32 x 32 PCB masks

THz
Amplitude

THz Phase

Mittleman Group, Rice University



THz Imaging 2: Sampling in Fourier

Mittleman Group, Rice University



Conclusions

• Compressive sensing

– exploits signal sparsity/compressibility

– integrates sensing with compression

– enables new kinds of imaging/sensing devices

• Near/Medium-term applications

– tomography/medical imaging

– cameras and imagers where CCDs and CMOS arrays 
are blind

– potential strategy to boost time-resolution in many 
imaging settings

– electron microscopy?
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