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Digital Revolution




Digital Acquisition

e Foundation: Shannon sampling theorem

f p
Must sample at 2x highest frequency

of the signal (Nyquist rate)
. y,
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e Time: A/D converters, receivers, ...
e Space: cameras, imaging systems, ...

e High-frequency content = lots of samples...



Sparsity

e Many signals can be compressed in some
representation/basis (Fourier, wavelets, ...)

N K KN
pixels large
wavelet
coefficients
N K KN
wideband large
signal Gabor
samples coefficients




Sensing by Sampling

e Standard paradigm for digital data acquisition
- sample data (ADC, digital camera, ...)
- compress data (signal-dependent, nonlinear)

N N > K K
.GC—’[sampIe]—-[ compress]—'[transmit/store
JPEG
MPEG

K EEnN N . ‘
receive ]—-[ decompress ]_’:U -

e Sample-and-compress paradigm is wasteful
- samples cost $$$ and/or time




From Samples to Measurements

e Shannon was a pessimist

— worst case bound for
any bandlimited signal

o Compressive sensing
[Candes, Romberg, Tao; Donoho - 2004]

— generalize “samples” to linear "measurements”
— incorporate prior knowledge about the signal (sparsity)

Goal: Take as few measurements as possible while
retaining the ability to accurately recover the signal
from the measurements.



Compressive Sensing

Replace samples with /inear measurements

y=>oo

N X 1
measurements

spa rse



Sparsity

X W

e For now: Assume W = [

K nonzero
entries
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Compressive Sensing

Replace samples with /inear measurements
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1 N x 1
measurements n
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Restricted Isometry Property (RIP)

e Preserve the structure of sparse signals
e For all K-sparse 1 and x>
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RIP Matrix: Option 1

e Random Fourier submatrix:

e If the rows are selected at random with
M > CK log*(N)

then with high probability, ®d will satisfy the RIP
[Candes and Tao]



RIP Matrix: Option 2

Pick ® at random

- i.i.d. Gaussian

- i.i.d. Bernouli

- any bounded random variable RY

M > CKlog(N/K) éé‘ﬁ

Proof relies on concentration of measure

[Baraniuk, Davenport, DeVore, Wakin] l b

- fix a 2 K -dimensional subspace

— pick a finite sampling of points on the sphere RM
- repeat for all (2]}[() subspaces

— argue that d preserves the norm of each point 6h

- extend from point set to entire sphere 0



Universality

e Random matrix will work with any fixed orthonormal
basis (with high probability)
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Signal Recovery

e Reconstruction/decoding:

-

<
given y = Pz

find
\_ J
Y CD
M x 1 —
measurements I ﬂ..: .
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M x N

K <M <N |

\ ill-posed

inverse problem
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Signal Recovery

Reconstruction/decoding:
(ill-posed inverse problem)

4 _ )
given y = Px

find x
\_ J

Ly z=arg min ||zl — Z=(dTP) 1Ty

y=>x

Fast, but wrong

Solution is
almost never sparse
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Signal Recovery

Reconstruction/decoding:
(ill-posed inverse problem)

L,: T =

Ly: v =

Correct,

arg min ||z||2

y=>bx

arg min ||x||o

-

y=>x

but s/ow (NP-Hard)

<
given y = Px

find x

W,

number of
nonzero
entries



Signal Recovery

Reconstruction/decoding:
(ill-posed inverse problem)

L,: = arg min ||z||»
y=>bx

L,: x = arg min ||z||o
y=>bx

L,:x

y=>bx

If ¢ satisfies the RIP, L, gives same answer as L,

-

<
given y = Px

find x

W,

arg min ||x||1 «—— linear program



Why L; Works

z = arg min [|z'[|1

y=>x




Recovery in Noise

e What about noise, or robustness to non-sparse
signals?

y=>Px+e

T = argmin ||z'||1
ly—Pa'f|]2<e

4 )
—~ T — T
15 — zll2 < Collefla + co 1z = 2Kl

VK




Compressive Sensing Hallmarks

e Asymmetrical
— No processing at encoder
— significant processing at decoder

e Universal

— random projections / hardware can be designed and
used without prior knowledge of the sparsifying basis

e Democratic

— each measurement carries the same amount of
information

— simple encoding
— robust to measurement loss and quantization



Democracy and Sparse Noise

k corrupted
measurements
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Justice Pursuit

u = arg min ||u|1
U

s.t. y=1[® Ilu

/Theorem: If ®is a subGaussian matrix with \

M =0 (K +mtog ()

K+ kK

then [® []satisfies the RIP of order (K + k) with

\probability at least 1 — 3¢~ ¢M /

[Laska, Davenport, Baraniuk]



Justice Pursuit

e We can recover sparse signhals exactly in the
presence of unbounded sparse noise

Average Error

Fixed ||€H2 = 0.1

A =10

o k=40
o =70 |
—JP

Fixed = = 10

2 Noise Norm=0.01
o Noise Norm=0.2

. o Noise Norm=0.3 ||
Y —JP
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Average Error
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Justice and Democracy
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e The fact that|® I| satisfies the RIP also implies that
we can delete arbitrary rows of ® and retain the RIP

e Random matrices satisfy a very strong adversarial
form of democracy



Compressive Imaging in Practice

e Tomography in medical imaging
— each projection gives you a set of Fourier coefficients

- fewer measurements mean
* more patients
= sharper images
= |ess radiation exposure

e Conventional imaging at non-visible wavelengths
— cannot always build sensor arrays
— raster scan takes time



1 Chip DLP™ Projection
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TI Digital Micromirror Device

Mirror =10 deg

CMOS
Substrate

Spring Tip



"Single-Pixel” Camera

random
patternon| g
DMD array '''' =
|7 [ single photon
detector
image
- reconstruction
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A/D conversion

L

© MIT Tech Review



Image Acquisition

16384 Fixels 16334 Pixels
{Jriginal 1600 Weasurements 3300 Measurements
(10%o) (20%0)

65536 Pixels 65536 Pixels
1300 MMeasurements 3300 Deasurements
(2%0) (5%0)




World’s First Photograph

e 1826, Joseph Niepce
e Farm buildings and sky
e 8 hour exposure




"Single-Pixel” Camera
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Low-Light Imaging with PMT

Incoming Photomultiplier Tube

Php':°t°"\ Window
0oto-
cathode / { Dynodes “ { Anode 1\.
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Figure 1

True color low-light imaging: U

256 x 256 image with 10:1
compression




IR Imaging

Canvas board:

« "IR"” written using charcoal
pencil

« covered by a layer of blue ail
paint

« scene is illuminated by a 150
watt halogen lamp

5% 10% 100%

Reconstruction of 256 x 256 pixel image



IR Imaging
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256 x 256
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32%X32 128 x128

Compressive sensing:

Light from half the pixels

256 x 256



Hyperspectral Imaging

Sum of all bands Real target




Hyperspectral Imaging




THz Imaging

object mask S 32 x 32 PCB masks
to be imaged pattern on T _ -
THz transmitter : a planar
/ screen

(fiber-coupled \ THz receiver
PC antenna) /I /

THz
Amplitude

Object mask 300 600 THz Phase
measurements measurements

Mittleman Group, Rice University



THz Imaging 2: Sampling in Fourier

object tal
mask meta
aperture

;

THz receiver

THz transmitter
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6.4 cm 6 cm

6.4 cm
6 cm

Fourier Transform CPR Reconstruction CSPR Reconstruction
of object (4096 measurements) (1000 measurements)

(Magnitude-only)

Mittleman Group, Rice University



Conclusions

e Compressive sensing
— exploits signal sparsity/compressibility
— integrates sensing with compression
— enables new kinds of imaging/sensing devices

e Near/Medium-term applications
- tomography/medical imaging
— cameras and imagers where CCDs and CMOS arrays
are blind
— potential strategy to boost time-resolution in many
imaging settings
— electron microscopy?
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