SRICE

Controlling False Alarms
with
Support Vector Machines

Mark Davenport Richard Baraniuk
Clayton Scott

Rice University
dsp.rice.edu



The Classification Problem

Given some training data . . .

. . . find a classifier that generalizes



Conventional Classification

Signal / Pattern: X € R4
Label: Ye{-1,41}
Classifier: f: RY— {—1,+1}

Probabilit
of ervor: | PE(f) 1= Prob(f(X) # V)

Goal: f*:=arg mfin Pr(f)




A Practical Approach

e Support Vector Machines (SVMs) offer
a practical, nonparametric method for

learning from data

e General idea:
- use “kernel trick”
— hyperplane classifiers
- maximize the margin
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[Cortes, Vapnik (1995)]



The “Kernel Trick”

e Problem: Linear classifiers perform poorly
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The “Kernel Trick”

e Problem: Linear classifiers perform poorly
e Solution: Map data into feature space
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Maximum Margin Principle

e Problem: Many classifiers to choose from




Maximum Margin Principle

e Problem: Many classifiers to choose from

e Solution: Pick one that maximizes margin
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What's Wrong?

e Sometimes false alarms are more/less
important than misses

False alarm: object detected, but not present

Miss: object present, but not detected




What Else?

e Class frequencies are often not
represented in the training data

— minimizing P can ignore smaller class

e Prior probabilities are usually unknown

¢100 training samples
e 50 have leukemia
e 50 do not

%,

50% of population has
leukemia




Neyman-Pearson Classification

e Solution: Recast the problem

False alarm: Pr(f) ;= Prob(f(X) =+1Y = —-1)
Miss: Py (f) := Prob(f(X) = —-1]Y = +1)

e Goal:

fo 1= arg min Prr(f)

S.T. PF(f) < «




Simple Approach

e Bias-shifting
- ad-hoc, but oft-used

f_(z) f3(x)
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Cost-Sensitive SVMs

e We need to explicitly treat the classes
differently during training

min w2 -2u_ 1/_|_p—|—— Y g+ Y g
b&- +ZEI_|_ n— el
2v—-SVM s.t. ((w,X;) +b0)Y; > p—¢

(v4,v_) € [0, 1]2

e Equivalent to the 2C-SVM
e How to pick v, and v_?

[Chew, Bogner (2001)]
[Davenport (2005)]



Controlling False Alarms: 2v-SVM

e Perform grid search over parameters
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Controlling False Alarms: 2v-SVM

e Perform grid search over parameters
e Estimate false alarm and miss rates
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Controlling False Alarms: 2v-SVM

e Perform grid search over parameters
e Estimate false alarm and miss rates
e Set (v} ,v*,0) :=argmin Py

s.t. Pr <«

AN AN

Pr Py




Performance Evaluation

1 — Py

P

We need a scalar measure of performance

— we want to evaluate our ability to achieve a
specific point on the ROC



Performance Evaluation

1 - Py
Pr
£(f) 1= —max{Pr(f) - 0,0} + Py (f)
e Theorem:

fa is the unique global minimizer of £(f)

[Scott (2005)]



Experimental Results

Use Gaussian kernel

Performance averaged
over 100 permutations

4 benchmark datasets

We report

- mean P, Py,
- median E

2v-SVM clear winner

P- | Py E
_ BS .06 | .46 637
thyroid
2v-SVM | .09 | .04 .051
BS .09 | .55 | 1.000
heart
2v-SVM | .11 | .23 326
BS .00 11.00{( 1.000
cancer
2v-SVM | .11 | .69 821
BS A1 | .33 .628
banana
2v-SVM | .10 | .12 .160
a= 0.1

BS: bias-shifting
2v-SVM: our approach




Error Estimation

True False Alarm Rate
X R, A0

Cross-Validation
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e CV has high variance

e Filtering reduces the
variance and yields a
better error estimate




Filtering Results

e Filtering provides p. | P, | E
strong performance thyroid cs | 10! 06 | 127
gains FGS |.09| .04 | .051

GS |.12| 22| .375
heart

e Shape of the filter FGS | 11| .23 | .326

doesn’t seem to matter | cancer > |6 -67 | 1.122

: - FGS | .11 | .69 | .821
— Gaussian window

. : GS A1 12 | .2
— Uniform (boxcar) filter banana >

FGS 10 | .12 .160

— Median filter
a= 0.1

GS: grid search
FGS: filtered grid search



Coordinate Descent

e Technique for reducing training time
e Eliminates full grid search
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Coordinate Descent Results

e Training time is almost P. | P, E
as fast as bias-shifting thyroid CD |.08| .04 | .066
FGS | .09 | .04 | .051
e Performance ot L CD | 11| 23| 318
comparable to full grid Fes A1) 23| 326
search camcer | CD | A1 .68 | 871

FGS 11 | .69 821

CD 10 | .13 179

e Many more techniques |Panana — = = 1 160

for fast search possible
o= 0.1

CD: coordinate descent
FGS: filtered grid search



Conclusion

e 2v-SVM consistently outperforms
bias-shifting at controlling false alarms

e Simple techniques improve performance

— more accurate error estimation through
filtering

- faster training through coordinate descent

e Applications:
— anomaly detection with
minimum volume sets
- minimax classification

e Code available at www.dsp.rice.edu/software
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