

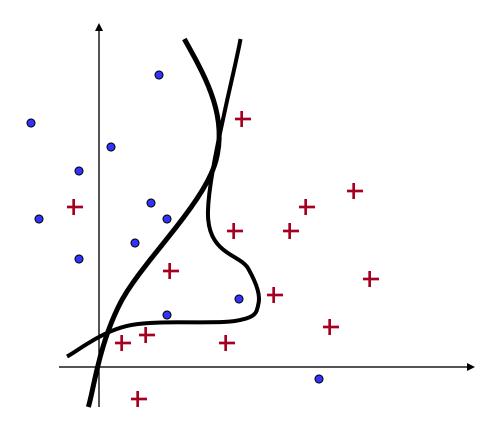
Controlling False Alarms with Support Vector Machines

Mark Davenport Richard Baraniuk Clayton Scott

Rice University dsp.rice.edu

The Classification Problem

Given some training data . . .



. . . find a classifier that *generalizes*

Conventional Classification

Signal / Pattern: $X \in R^d$ Label: $Y \in \{-1, +1\}$ Classifier: $f : R^d \rightarrow \{-1, +1\}$

Probability
of error:
$$P_E(f) := \operatorname{Prob}(f(X) \neq Y)$$

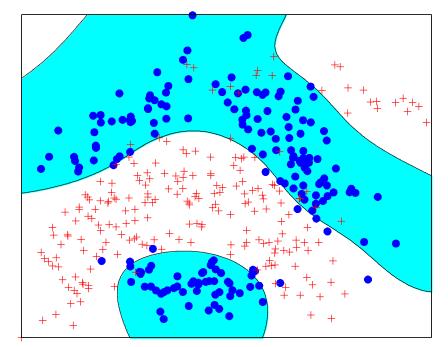
Goal:

$$f^* := \arg\min_f P_E(f)$$

A Practical Approach

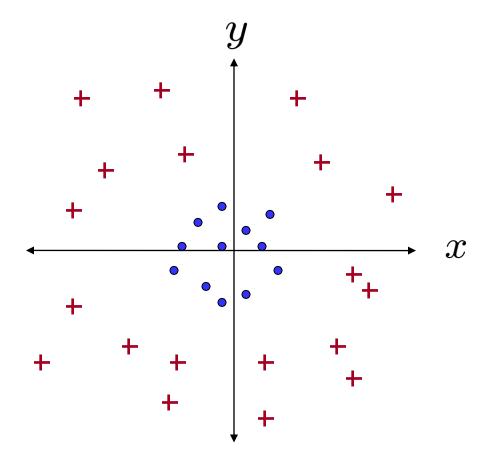
 Support Vector Machines (SVMs) offer a practical, nonparametric method for learning from data

- General idea:
 - use "kernel trick"
 - hyperplane classifiers
 - maximize the *margin*

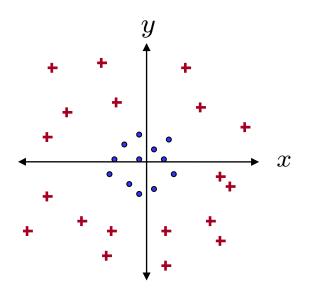


[Cortes, Vapnik (1995)]

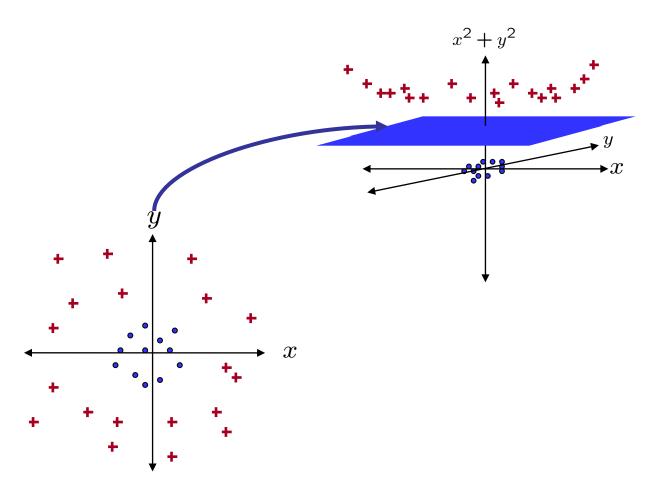
• Problem: Linear classifiers perform poorly



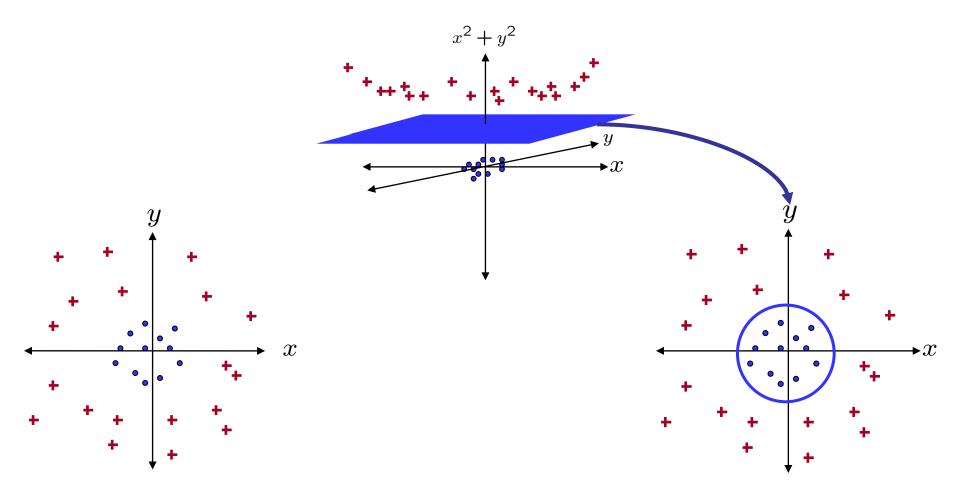
- Problem: Linear classifiers perform poorly
- Solution: Map data into *feature space*



- Problem: Linear classifiers perform poorly
- Solution: Map data into *feature space*

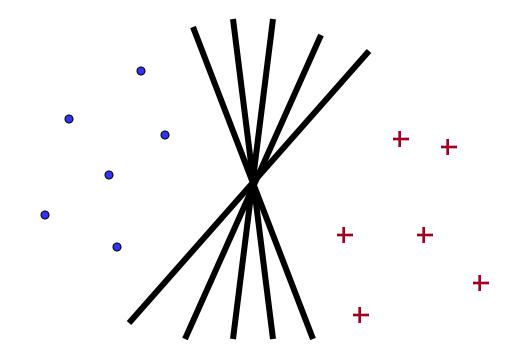


- Problem: Linear classifiers perform poorly
- Solution: Map data into *feature space*



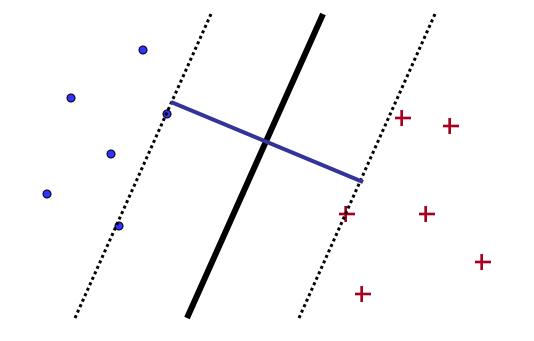
Maximum Margin Principle

• Problem: Many classifiers to choose from



Maximum Margin Principle

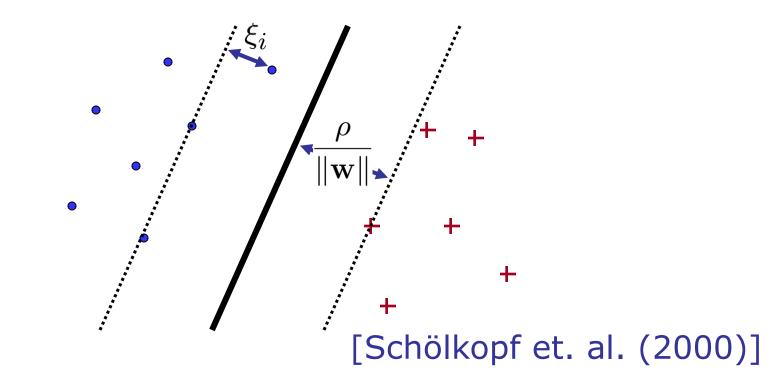
- Problem: Many classifiers to choose from
- Solution: Pick one that maximizes margin



v-SVM

$$\min_{\mathbf{w},b,\xi,\rho} \quad \frac{1}{2} \|\mathbf{w}\|^2 - \nu\rho + \frac{1}{n} \sum_{i=1}^n \xi_i \qquad \nu \in [0,1]$$

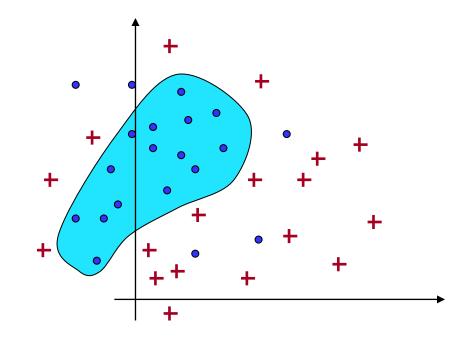
s.t. $(\langle \mathbf{w}, \mathbf{X}_i \rangle + b) Y_i \ge \rho - \xi_i$



What's Wrong?

• Sometimes false alarms are more/less important than misses

False alarm: object detected, but not present Miss: object present, but not detected



What Else?

- Class frequencies are often not represented in the training data

 minimizing P_E can ignore smaller class
- Prior probabilities are usually unknown

- •100 training samples
- 50 have leukemia
- 50 do not

50% of population has leukemia

Neyman-Pearson Classification

• Solution: Recast the problem

False alarm: $P_F(f) := \text{Prob}(f(X) = +1|Y = -1)$

Miss: $P_M(f) := \text{Prob}(f(X) = -1|Y = +1)$

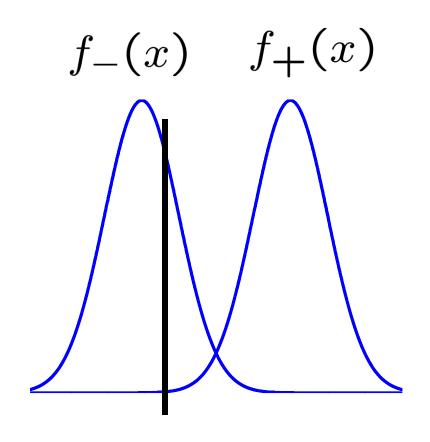
• Goal:

$$f_{\alpha}^{*} := \arg\min_{f} P_{M}(f)$$

s.t. $P_{F}(f) \leq \alpha$

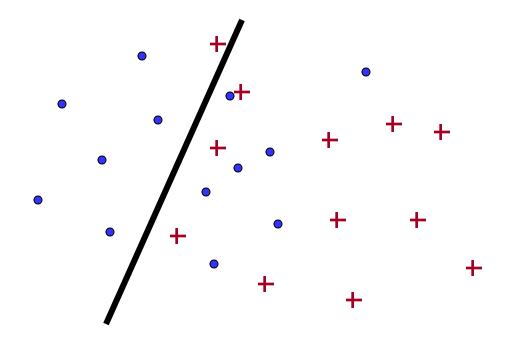
Simple Approach

Bias-shifting
 ad-hoc, but oft-used



Simple Approach

Bias-shifting
 ad-hoc, but oft-used



Cost-Sensitive SVMs

• We need to explicitly treat the classes differently during training

$$\min_{\mathbf{w},b,\xi,\rho} \quad \frac{1}{2} \|\mathbf{w}\|^2 - 2\nu_{-}\nu_{+}\rho + \frac{\nu_{-}}{n_{+}} \sum_{i \in I_{+}} \xi_i + \frac{\nu_{+}}{n_{-}} \sum_{i \in I_{-}} \xi_i$$

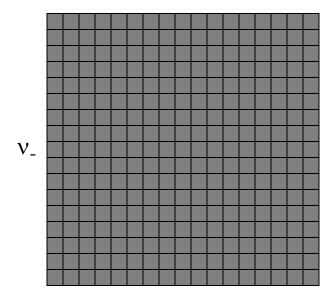
2v-SVM s.t. $(\langle \mathbf{w}, \mathbf{X}_i \rangle + b) Y_i \ge \rho - \xi_i$

 $(\nu_+, \nu_-) \in [0, 1]^2$

- Equivalent to the 2C-SVM
- How to pick $\nu_{\!\scriptscriptstyle +}$ and $\nu_{\!\scriptscriptstyle -}$?

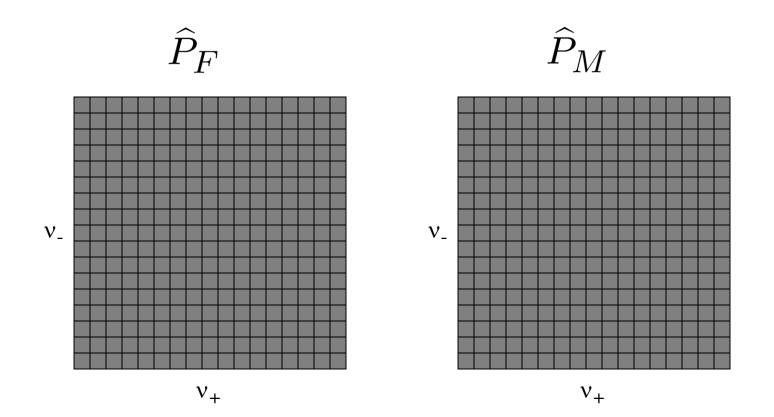
[Chew, Bogner (2001)] [Davenport (2005)]

• Perform grid search over parameters

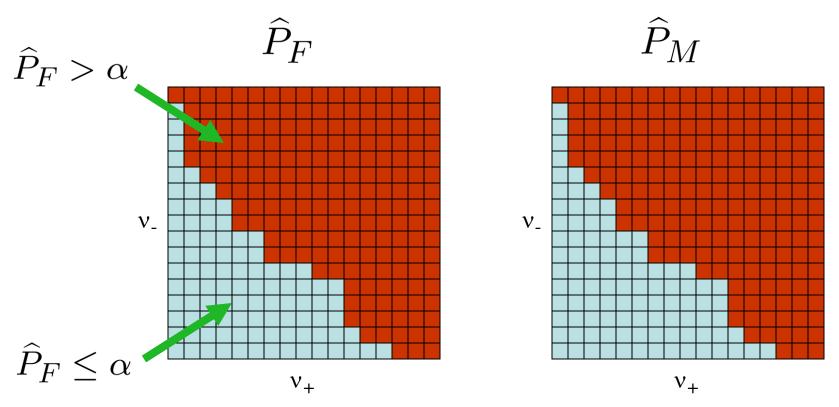


 v_+

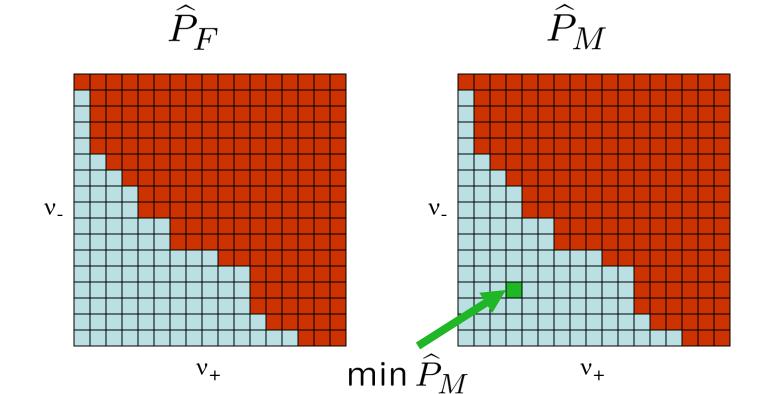
- Perform grid search over parameters
- Estimate false alarm and miss rates



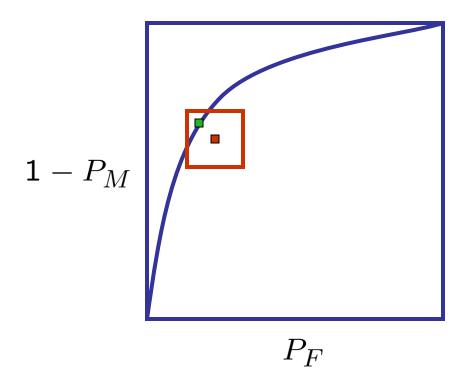
- Perform grid search over parameters
- Estimate false alarm and miss rates
- Set $(\nu_+^*, \nu_-^*, \sigma)$:= arg min \hat{P}_M s.t. $\hat{P}_F \leq \alpha$



- Perform grid search over parameters
- Estimate false alarm and miss rates
- Set $(\nu_+^*, \nu_-^*, \sigma)$:= arg min \hat{P}_M s.t. $\hat{P}_F \leq \alpha$



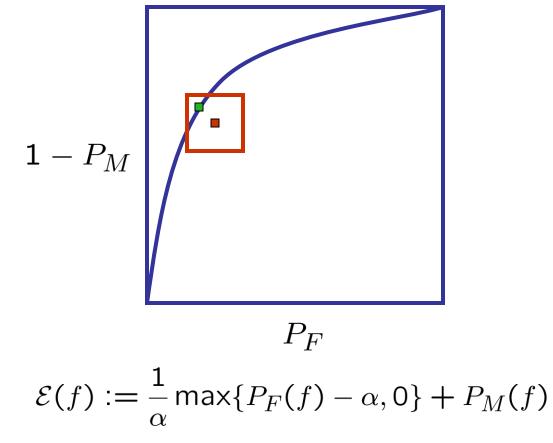
Performance Evaluation



We need a scalar measure of performance

 we want to evaluate our ability to achieve a specific point on the ROC

Performance Evaluation



• Theorem:

 f^*_{lpha} is the unique global minimizer of $\mathcal{E}(f)$

[Scott (2005)]

Experimental Results

- Use Gaussian kernel
- Performance averaged over 100 permutations
- 4 benchmark datasets
- We report
 - mean P_{F} , P_{M}
 - median E
- 2v-SVM clear winner

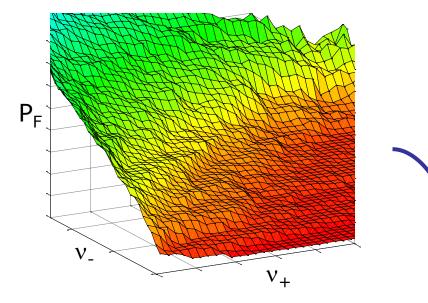
		P _F	P _M	E
thyroid	BS	.06	.46	.637
	2v-SVM	.09	.04	.051
heart	BS	.09	.55	1.000
	2v-SVM	.11	.23	.326
cancer	BS	.00	1.00	1.000
	2v-SVM	.11	.69	.821
banana	BS	.11	.33	.628
	2v-SVM	.10	.12	.160

 α = 0.1 BS: bias-shifting 2v-SVM: our approach

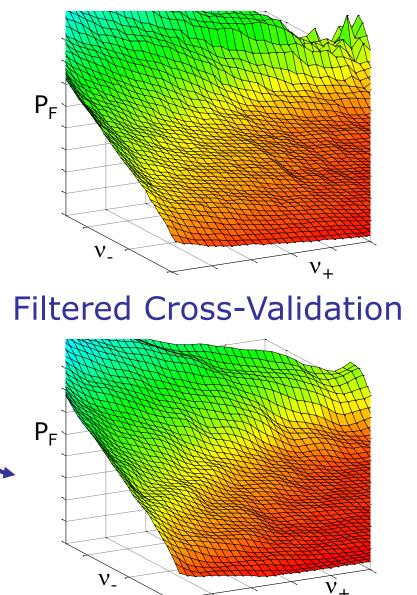
Error Estimation

True False Alarm Rate

Cross-Validation



- CV has high variance
- Filtering reduces the variance and yields a better error estimate



Filtering Results

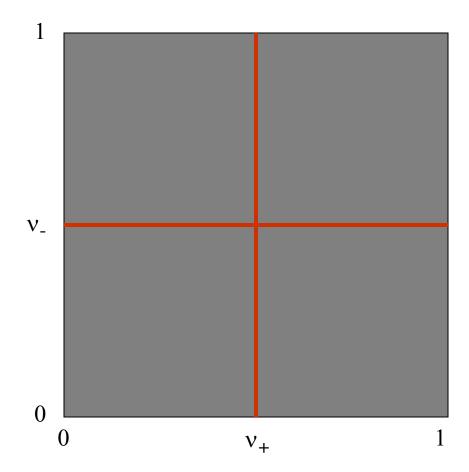
- Filtering provides strong performance gains
- Shape of the filter doesn't seem to matter
 - Gaussian window
 - Uniform (boxcar) filter
 - Median filter

		P _F	P _M	E
thyroid	GS	.10	.06	.127
	FGS	.09	.04	.051
heart	GS	.12	.22	.375
	FGS	.11	.23	.326
cancer	GS	.16	.67	1.122
	FGS	.11	.69	.821
banana -	GS	.11	.12	.255
	FGS	.10	.12	.160

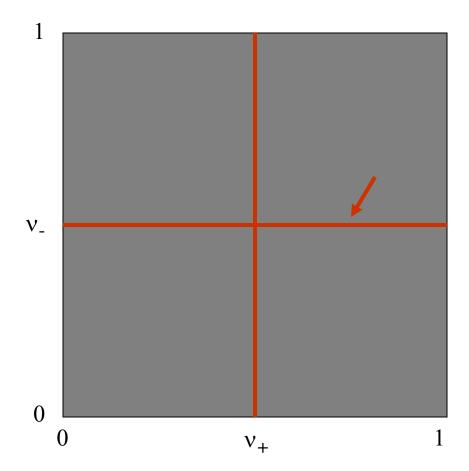
 α = 0.1

GS: grid search FGS: filtered grid search

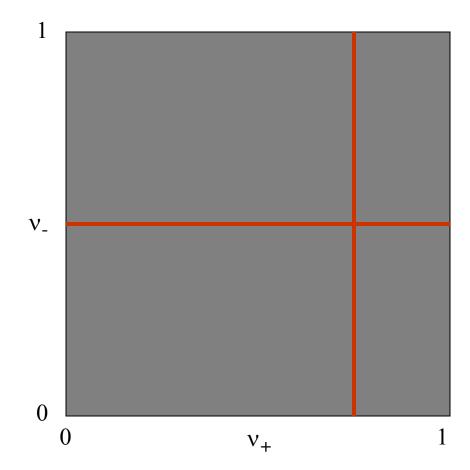
- Technique for reducing training time
- Eliminates full grid search



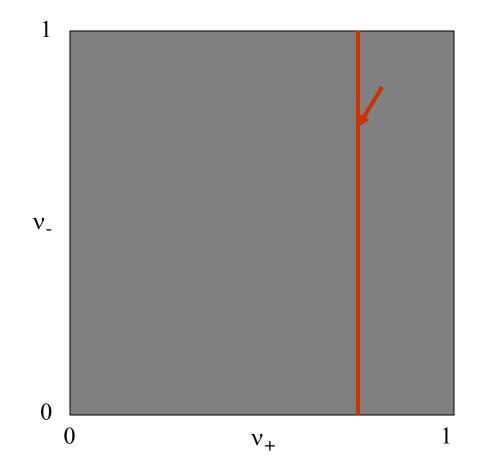
- Technique for reducing training time
- Eliminates full grid search



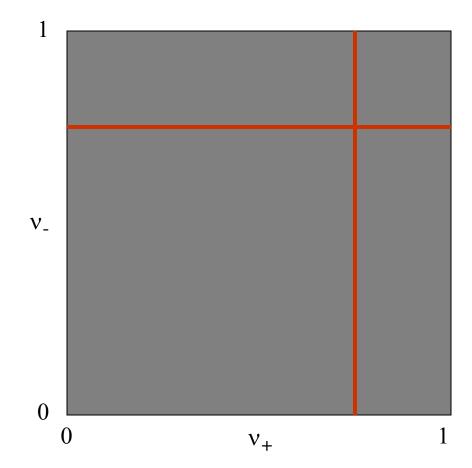
- Technique for reducing training time
- Eliminates full grid search



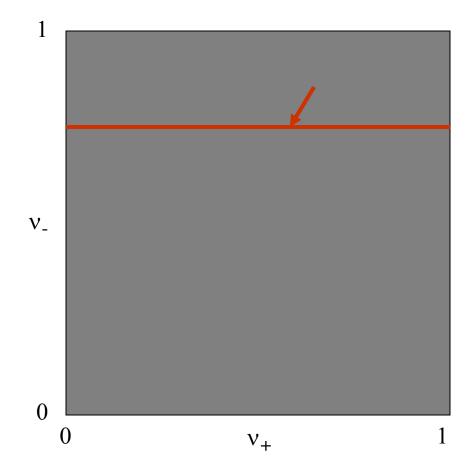
- Technique for reducing training time
- Eliminates full grid search



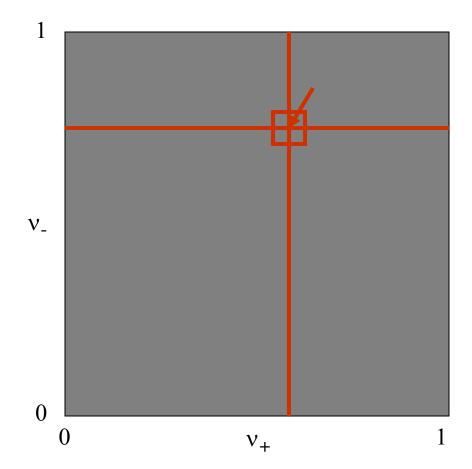
- Technique for reducing training time
- Eliminates full grid search



- Technique for reducing training time
- Eliminates full grid search



- Technique for reducing training time
- Eliminates full grid search



Coordinate Descent Results

- Training time is almost as fast as bias-shifting
- Performance comparable to full grid search
- Many more techniques for fast search possible

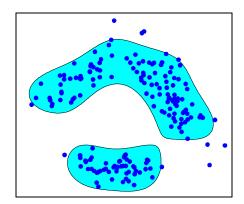
		P _F	P _M	E
thyroid	CD	.08	.04	.066
	FGS	.09	.04	.051
heart	CD	.11	.23	.318
	FGS	.11	.23	.326
cancer	CD	.11	.68	.871
	FGS	.11	.69	.821
banana	CD	.10	.13	.179
	FGS	.10	.12	.160

$$\alpha = 0.1$$

CD: coordinate descent FGS: filtered grid search

Conclusion

- 2v-SVM consistently outperforms bias-shifting at controlling false alarms
- Simple techniques improve performance
 - more accurate error estimation through filtering
 - faster training through coordinate descent
- Applications:
 - anomaly detection with minimum volume sets
 - minimax classification



• Code available at www.dsp.rice.edu/software

References

- C. Scott and R. Nowak, "A Neyman-Pearson approach to statistical learning," *IEEE Transactions on Information Theory*, 2005.
- B. Schölkopf, A. J. Smola, R. Williams, and P. Bartlett, "New support vector algorithms," *Neural Computation*, 2000.
- H. G. Chew, R. E. Bogner, and C. C. Lim, "Dual-v support vector machine with error rate and training size biasing," ICASSP 2001.
- C. C. Chang and C. J. Lin, "Training v support vector classifiers: Theory and algorithms," *Neural Computation*, 2001.
- M. Davenport, "The 2v-SVM: A cost-sensitive extension of the v-SVM," http://www.ece.rice.edu/~md.
- C. Scott, "Performance measures for Neyman-Pearson classification," http://www.stat.rice.edu/~cscott.