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The Classification Problem

Given some training data . . .

. . . find a classifier that generalizes



Conventional Classification

Signal / Pattern:

Label:

Classifier:

Goal:          

Probability
of error:



A Practical Approach

• Support Vector Machines (SVMs) offer 
a practical, nonparametric method for 
learning from data

• General idea:

– use “kernel trick”

– hyperplane classifiers

– maximize the margin

[Cortes, Vapnik (1995)]
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Maximum Margin Principle

• Problem: Many classifiers to choose from

• Solution: Pick one that maximizes margin



-SVM

[Schölkopf et. al. (2000)]



What’s Wrong?

• Sometimes false alarms are more/less 
important than misses

False alarm: object detected, but not present

Miss: object present, but not detected



What Else?

• Class frequencies are often not 
represented in the training data

– minimizing PE can ignore smaller class

• Prior probabilities are usually unknown

•100 training samples
• 50 have leukemia
• 50 do not

50% of population has 
leukemia



Neyman-Pearson Classification

• Solution: Recast the problem

• Goal:

False alarm:

Miss:



Simple Approach

• Bias-shifting

– ad-hoc, but oft-used
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Cost-Sensitive SVMs

• We need to explicitly treat the classes 
differently during training

• Equivalent to the 2C-SVM

• How to pick + and - ?

2-SVM

[Chew, Bogner (2001)]
[Davenport (2005)]



Controlling False Alarms: 2-SVM

• Perform grid search over parameters

-

+



Controlling False Alarms: 2-SVM

• Perform grid search over parameters

• Estimate false alarm and miss rates

-

+

-

+



Controlling False Alarms: 2-SVM

• Perform grid search over parameters

• Estimate false alarm and miss rates

• Set

-

+

-

+



Controlling False Alarms: 2-SVM

• Perform grid search over parameters

• Estimate false alarm and miss rates

• Set

-

+

-

+



Performance Evaluation

We need a scalar measure of performance

– we want to evaluate our ability to achieve a 
specific point on the ROC



Performance Evaluation

• Theorem:

[Scott (2005)]



Experimental Results

• Use Gaussian kernel

• Performance averaged 
over 100 permutations

• 4 benchmark datasets

• We report

– mean PF, PM

– median E

• 2-SVM clear winner

PF PM
E

thyroid
BS .06 .46 .637

2-SVM .09 .04 .051

heart
BS .09 .55 1.000

2-SVM .11 .23 .326

cancer
BS .00 1.00 1.000

2-SVM .11 .69 .821

banana
BS .11 .33 .628

2-SVM .10 .12 .160

= 0.1

bias-shifting
our approach

BS:
2-SVM:



Error Estimation

• CV has high variance

• Filtering reduces the 
variance and yields a 
better error estimate

Cross-Validation

Filtered Cross-Validation

True False Alarm Rate

-
+

PF

- +

PF

- +

PF



Filtering Results

• Filtering provides 
strong performance 
gains

• Shape of the filter 
doesn’t seem to matter

– Gaussian window

– Uniform (boxcar) filter

– Median filter

PF PM
E

thyroid
GS .10 .06 .127

FGS .09 .04 .051

heart
GS .12 .22 .375

FGS .11 .23 .326

cancer
GS .16 .67 1.122

FGS .11 .69 .821

banana
GS .11 .12 .255

FGS .10 .12 .160

= 0.1

grid search
filtered grid search

GS:
FGS:



Coordinate Descent

• Technique for reducing training time

• Eliminates full grid search
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Coordinate Descent Results

• Training time is almost 
as fast as bias-shifting

• Performance 
comparable to full grid 
search

• Many more techniques 
for fast search possible

PF PM
E

thyroid
CD .08 .04 .066

FGS .09 .04 .051

heart
CD .11 .23 .318

FGS .11 .23 .326

cancer
CD .11 .68 .871

FGS .11 .69 .821

banana
CD .10 .13 .179

FGS .10 .12 .160

= 0.1

coordinate descent
filtered grid search

CD:
FGS:



Conclusion

• 2-SVM consistently outperforms 
bias-shifting at controlling false alarms

• Simple techniques improve performance
– more accurate error estimation through 

filtering

– faster training through coordinate descent

• Applications:
– anomaly detection with 

minimum volume sets

– minimax classification

• Code available at www.dsp.rice.edu/software
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