SPARSE SIGNAL DETECTION
FROM INCOHERENT PROJECTIONS

Overview S

Compress signals while preserving sufficient statistics
e requires no knowledge of signal structure

e requires no knowledge of type of statistics

Key idea: random projections

e universal measurement scheme for sparse signals

Connection: Compressive Sensing (CS)

e new theory for recovering sparse signals from
random projections

Information scalability

e generalize CS to recover different levels of
information from random projections

e requires fewer measurements, lower complexity

Sensing and Compression

Sparse sighal representation
e approximate length-V signal x using K coefficients
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Conventional sensing
e sample (at Nyquist rate)
e compress (using model such as sparsity)

e throw away most coefficients
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Compressive Sensing

[Donoho; Candes, Romberg, Tao]

Measure projections of signal onto incoherent basis

e e.d., Gaussian, Bernoulli +/-1 Y - M x 1
y = bxr = dWe D M x N
. . T . N x1
e mild oversampling: M ~ K log N

Recovery: find sparsest signal = that explains
measurements y

Random projections give universal, robust encoding

e sparsity basis ¥ known only at decoder

e reconstruction quality scales with M
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Greedy CS Recovery

Matching Pursuit
e initialize: set residual y. = y
e select column of W& most correlated with y,
e subtract column from g,

e iterate until T steps or ||y.|| is small
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S Information Scalability

Different applications require different levels of
information:

e signal reconstruction
fewer measurements;

lower computational
complexity

e signal approximation
e parameter estimation

e signal detection/classification

Random projections are universal with respect to
e sparsity-inducing basis
e level of information desired about x

Given y, directly estimate sufficient statistics about z

o exploit prior knowledge that x is sparse

Incoherent Detection and

Estimation Algorithm (IDEA)
Problem Setup:

e () = target indices in dictionary ¥
e given y = &z, decide between

Ho: 6o=0 vs. Hi: 60 +0

If + were provided and ¥ were orthonormal

e matched filtering
If + were provided and ¥ were redundant
e analogous to multiuser detection (NP-hard)
e solution: sparse approximation algorithms
IDEA: adapt Matching Pursuit for compressed detection
e reduce # iterations; increase stopping energy
e check coefficients of 6, to make decision

e detection possible without accurate reconstruction
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Case Study:

Dictionary-Based Detection
Two hypotheses:

Ho: z=n—4+w VvVS. Hi.: z=s+n—+w
s = Wsbs, [|0sllo = K
n = Wnbn, [|On|o= Kn
w ! noise

Sighal s and interference n components are sparse in
different dictionaries

Concatenate dictionaries and restate hypotheses
i 0. _
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IDEA detection robust to

e strength of sinusoidal interference

®* Noise energy

e quantization of measurements

Wideband Signals in Strong

Narrowband Interference

Setup:

e weak wideband chirps

e strong narrowband sinusoidal interference

® noise
Challenge: chirp detection

e chirps too weak for energy detection

e sinusoids may dominate in frequency domain
Solution: IDEA

e chirplet dictionary ¥, to sparsify chirps

e Fourier dictionary ¥, to sparsify interference

Experiment:
e signal length N = 1024

e chirplet dictionary with 432 distinct length-64 chirps
e sparsities K, = 5 (when present) and K, = 6

Extension to Classification

Suppose z has sparsity K in one of C bases/dictionaries

e each basis represents a signal class

Classification problem:
e determine class to which =z belongs

e sparse approximation from each dictionary requires
all N samples

Universality of random projections

e one set of cK random projections contains enough
information

From measurements y = ®x use greedy algorithm on
each class

e Orthogonal Matching Pursuit (OMP) stops when
approximation is exact

e choose class for which OMP terminates first
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Detection requires
e 3x fewer measurements
e 4x fewer iterations

compared to MP reconstruction

Conclusions

Detection vs. Reconstruction

Random projections as universal measurement scheme

e encode various types of signal statistics

e sparsity basis known only at decoder

Different algorithms can recover different levels of
information from random measurements

e l[ower computational complexity

e fewer measurements needed

Incoherent Detection and Estimation Algorithm (IDEA)

e partial greedy pursuit
e detection without reconstruction

e extensible to other inference tasks
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