# SPARSE SIGNAL DETECTION FROM INCOHERENT PROJECTIONS

## **Overview**

Compress signals while preserving sufficient statistics

- requires no knowledge of signal structure
- requires no knowledge of type of statistics

#### Key idea: random projections

• universal measurement scheme for sparse signals

## **Greedy CS Recovery**

#### Matching Pursuit

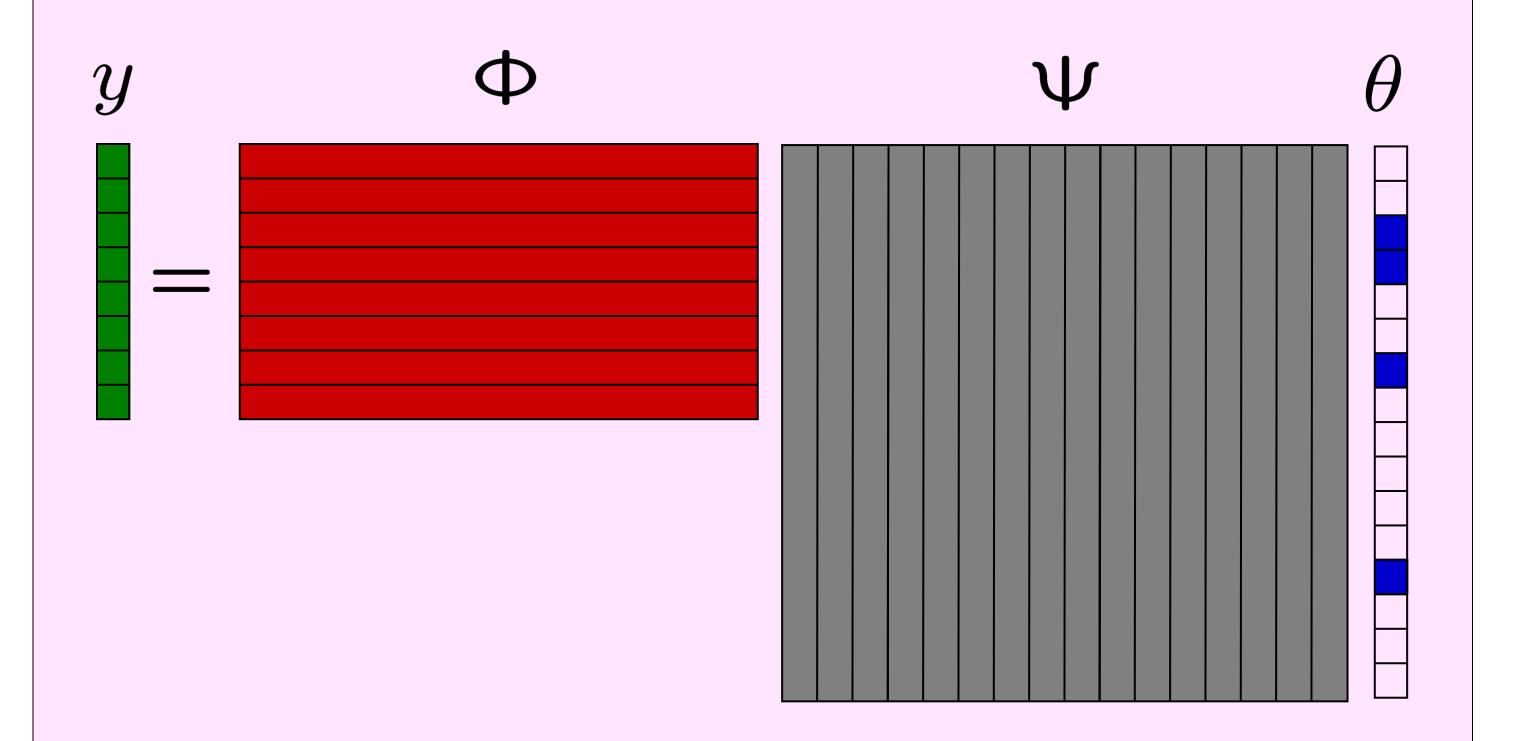
- initialize: set residual  $y_r = y$
- select column of  $\Psi\Phi$  most correlated with  $y_r$
- subtract column from  $y_r$
- iterate until T steps or  $||y_r||$  is small

Connection: Compressive Sensing (CS)

• new theory for *recovering* sparse signals from random projections

#### Information scalability

- generalize CS to recover different levels of information from random projections
- requires fewer measurements, lower complexity



## **Sensing and Compression**

Sparse signal representation

• approximate length-N signal x using K coefficients

$$\sum \theta_{i}$$

$$heta_i^q \, oldsymbol{\psi}_{oldsymbol{i}}$$

## **Information Scalability**

Different applications require different levels of information:

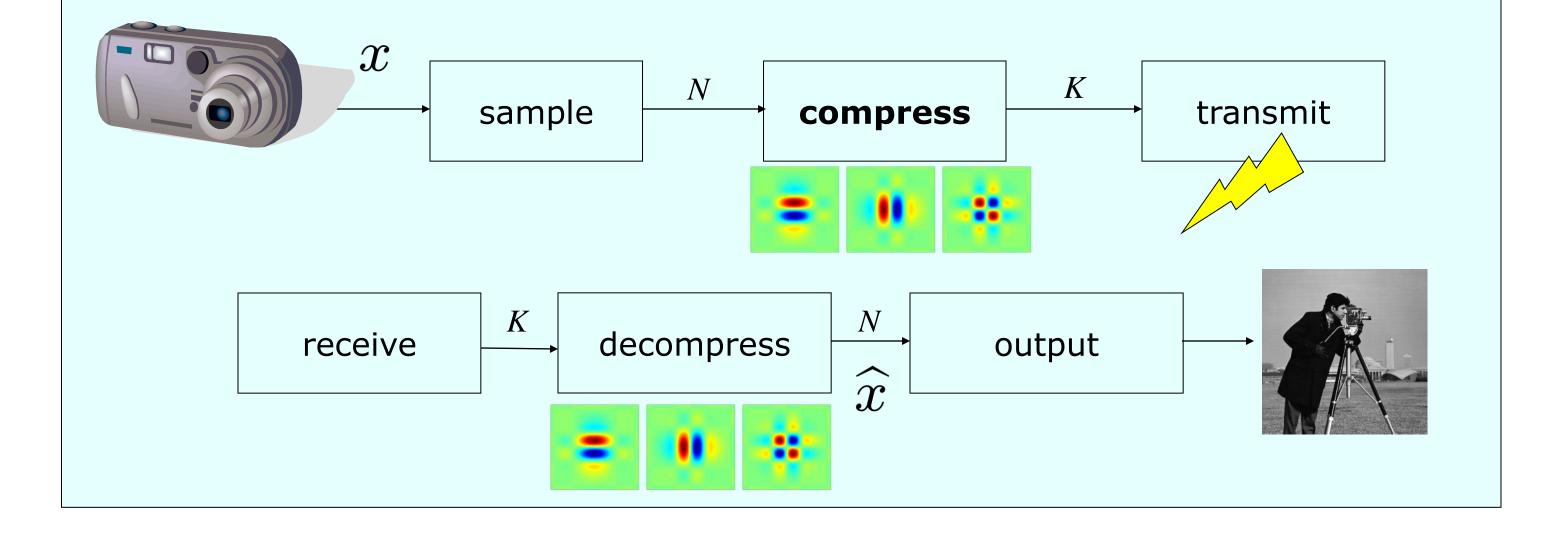
- signal reconstruction
- signal approximation

### fewer measurements;

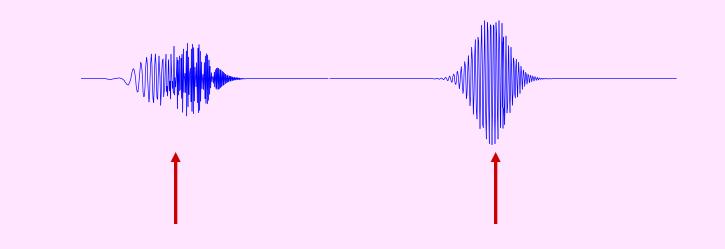
#### i=1 $K \ll N$ largest terms

#### Conventional sensing

- sample (at Nyquist rate)
- compress (using model such as sparsity)
- throw away most coefficients



- parameter estimation
- signal detection/classification



Random projections are *universal* with respect to

- sparsity-inducing basis
- level of information desired about x

Given y, directly estimate sufficient statistics about x

• exploit prior knowledge that x is sparse

### **Compressive Sensing** [Donoho; Candes, Romberg, Tao]

Measure projections of signal onto incoherent basis

## **Incoherent Detection and Estimation Algorithm (IDEA)**

Problem Setup:

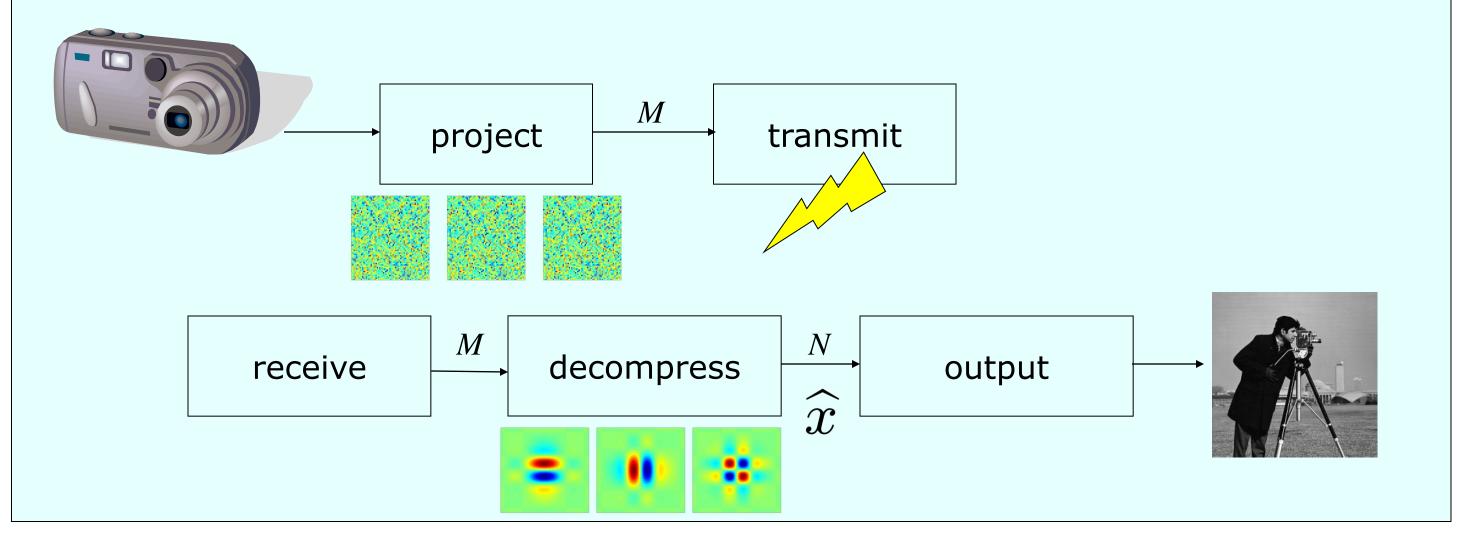
*lower* computational complexity

- e.g., Gaussian, Bernoulli +/-1  $y: M \times 1$  $y = \Phi x = \Phi \Psi \theta$   $\Phi : M \times N$  $x: N \times 1$
- mild oversampling:  $M \sim K \log N$

Recovery: find sparsest signal x that explains measurements y

Random projections give universal, robust encoding

- sparsity basis  $\Psi$  known only at *decoder*
- reconstruction quality scales with M



- - $\Omega$  = target indices in dictionary  $\Psi$
  - given  $y = \Phi x$ , decide between

 $\mathcal{H}_0: \quad \theta_\Omega = 0 \quad \text{vs.} \quad \mathcal{H}_1: \quad \theta_\Omega \neq 0$ 

If x were provided and  $\Psi$  were orthonormal matched filtering If x were provided and  $\Psi$  were redundant analogous to multiuser detection (NP-hard) solution: sparse approximation algorithms IDEA: adapt Matching Pursuit for compressed detection reduce # iterations; increase stopping energy • check coefficients of  $\theta_{O}$  to make decision

detection possible without accurate reconstruction

## Marco F. Duarte, Mark A. Davenport, Michael B. Wakin, and Richard G. Baraniuk **Rice University**

**Department of Electrical and Computer Engineering** 

**Case Study: Dictionary-Based Detection** 

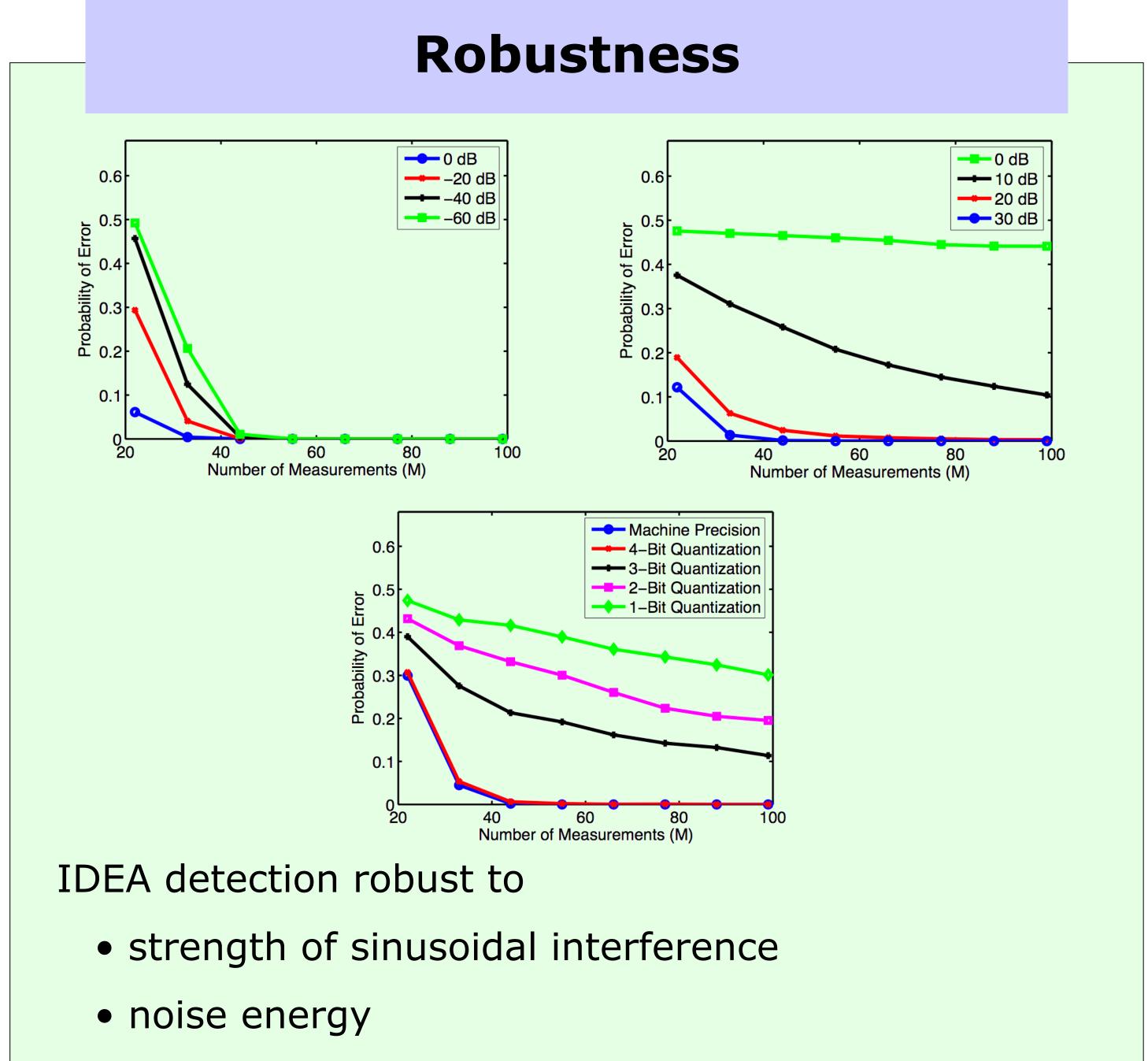
Two hypotheses:

$$\mathcal{H}_0$$
:  $x = n + \omega$  vs.  $\mathcal{H}_1$ :  $x = s + n + \omega$ 

$$s = \Psi_s \theta_s, \|\theta_s\|_0 = K_s$$

$$n = \Psi_n \theta_n, \|\theta_n\|_0 = K_n$$

 $\omega$  : noise



Signal *s* and interference *n* components are sparse in different dictionaries

Concatenate dictionaries and restate hypotheses

$$x = \left[\Psi_s \ \Psi_n\right] \left[\begin{array}{c} \theta_s \\ \theta_n \end{array}\right] + \omega =: \Psi\theta + \omega$$

$$\mathcal{H}_0: \quad \theta_s = 0 \quad \text{vs.} \quad \mathcal{H}_1: \quad \theta_s \neq 0$$

quantization of measurements

## Wideband Signals in Strong **Narrowband Interference**

Setup:

- weak wideband chirps
- strong narrowband sinusoidal interference

## **Extension to Classification**

Suppose x has sparsity K in one of C bases/dictionaries

• each basis represents a signal class

Classification problem:

noise

Challenge: chirp detection

- chirps too weak for energy detection
- sinusoids may dominate in frequency domain

Solution: IDEA

- chirplet dictionary  $\Psi_s$  to sparsify chirps
- Fourier dictionary  $\Psi_n$  to sparsify interference

Experiment:

- signal length N = 1024
- chirplet dictionary with 432 distinct length-64 chirps
- sparsities  $K_s = 5$  (when present) and  $K_n = 6$

- determine class to which x belongs
- sparse approximation from each dictionary requires all N samples

Universality of random projections

• one set of *cK* random projections contains enough information

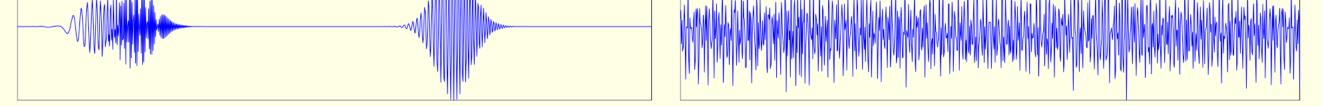
From measurements  $y = \Phi x$  use greedy algorithm on each class

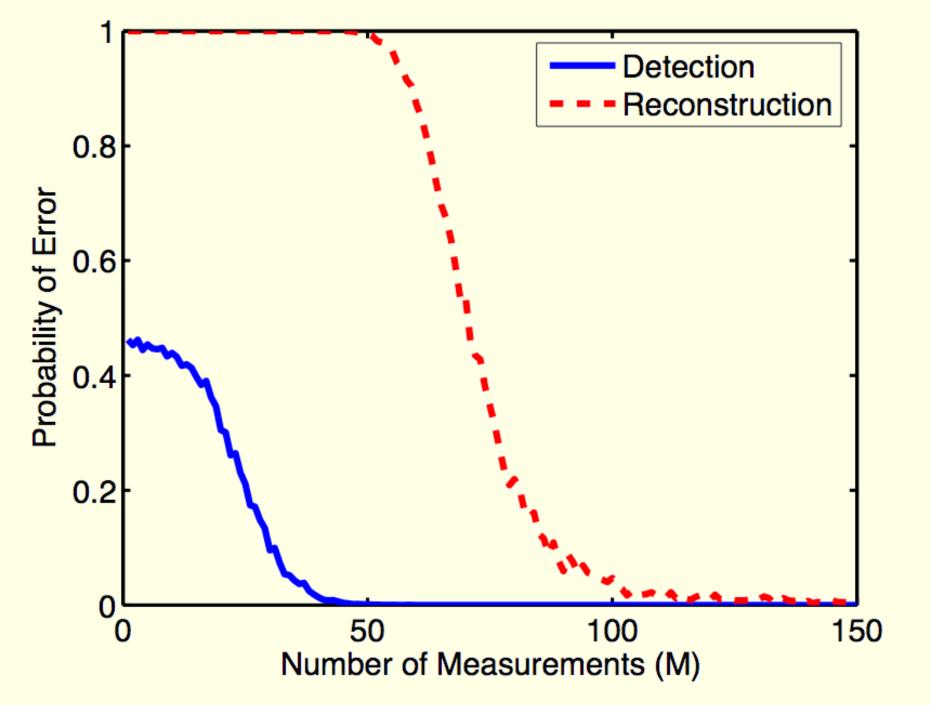
- Orthogonal Matching Pursuit (OMP) stops when approximation is exact
- choose class for which OMP terminates first

## **Detection vs. Reconstruction**



Random projections as universal measurement scheme





Detection requires

- 3x fewer measurements
- 4x fewer iterations

#### compared to MP reconstruction

- encode various types of signal statistics
- sparsity basis known only at decoder

Different algorithms can recover different levels of information from random measurements

- lower computational complexity
- fewer measurements needed

#### Incoherent Detection and Estimation Algorithm (IDEA)

- partial greedy pursuit
- detection without reconstruction
- extensible to other inference tasks

## dsp.rice.edu/cs