Compressive Sensing: Theory and Practice

Mark Davenport

Sensor Explosion

Digital Revolution

"If we sample a signal at twice its highest frequency, then we can recover it exactly."

Whittaker-Nyquist-Kotelnikov-Shannon

Data Deluge

By 2011, 1/2 of digital universe will have no home

[The Economist – March 2010]

Dimensionality Reduction

Data is rarely intrinsically high-dimensional

Signals often obey *low-dimensional models*

- sparsity
- manifolds
- low-rank matrices

The "intrinsic dimension" $K\ {\rm can}\ {\rm be}\ {\rm much}\ {\rm less}\ {\rm than}\ {\rm the}\ {\rm ``ambient}\ {\rm dimension}''\ N$

Compressive Sensing

Compressive Sensing

Compressive sensing [Donoho; Candes, Romberg, Tao – 2004] Replace samples with general *linear measurements*

$$y = \Phi x$$

William of Occam (1288-1348)

"Entities must not be multiplied unnecessarily"

"Simplicity is the ultimate sophistication" -Leonardo da Vinci

"Make everything as simple as possible, but not simpler" -Albert Einstein

Gaspard Riche, baron de Prony (1795)

 algorithm for estimating the parameters of a few complex exponentials

Constantin Carathéodory (1907) – given a sum of K sinusoids

$$x(t) = \sum_{i=1}^{K} \alpha_i e^{j\omega_i t}$$

we can recover $\boldsymbol{x}(t)$ from $\ 2K+1$ samples at any points in time

Arne Beurling (1938) – given a sum of K impulses $x(t) = \sum_{i=1}^{K} \alpha_i \delta(t - t_i)$

we can recover $\boldsymbol{x}(t)$ from only a piece of its Fourier transform

Ben "Tex" Logan (1965)

– given a signal x(t) with bandlimit Ω , we can arbitrarily corrupt an interval of length $2\pi/\Omega$ and still be able to recover x(t) no matter how it was corrupted

Sparsity

How Can We Exploit Sparsity

Two key theoretical questions:

- How to design Φ that preserves the structure of x ?
- Algorithmically, how to recover x from the measurements y?

Sensing Matrix Design

Restricted Isometry Property (RIP)

RIP Matrix: Option 1

- Choose a *random matrix*
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a "random subspace"

• Deep connections with random matrix theory and Johnson-Lindenstrauss Lemma

$$M = O(K \log(N/K)) \ll N$$

[Baraniuk, M.D., DeVore, Wakin – Const. Approx. 2008]

RIP Matrix: Option 2

• Random Fourier submatrix

$M = O(K \log^p(N/K)) \ll N$

[Candes and Tao – Trans. Information Theory 2006]

Hallmarks of Random Measurements

Stable

 Φ will preserve information, be robust to noise

Democratic

Each measurement has "equal weight"

Universal

Random Φ will work with **any** fixed orthonormal basis

Signal Recovery

Signal Recovery

Sparse Recovery: Noiseless Case

given
$$y = \Phi x$$
 find x

$$\ell_0$$
-minimization: $\hat{x} = \underset{x \in \mathbb{R}^N}{\arg \min} \|x\|_0 - \underset{NP-Hard}{\longrightarrow} \frac{nonconvex}{NP-Hard}$ s.t. $y = \Phi x$

$$\begin{array}{ll} \ell_1 \text{-minimization:} & \widehat{x} = \arg\min_{x \in \mathbb{R}^N} \|x\|_1 \longleftarrow \underset{\textit{program}}{\textit{linear}} \\ & \text{s.t.} & y = \Phi x \end{array}$$

If Φ satisfies the RIP, then ℓ_0 and ℓ_1 are equivalent!

Why ℓ_1 -Minimization Works

Recovery in Noise

• Optimization-based methods

$$\widehat{x} = \underset{x \in \mathbb{R}^{N}}{\arg\min} \|x\|_{1}$$

s.t.
$$\|y - \Phi x\|_{2} \le \epsilon$$

Greedy/Iterative algorithms
 – OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT

$$\|\widehat{x} - x\|_2 \le C_0 \|e\|_2 + C_1 \frac{\|x - x_K\|_1}{\sqrt{K}}$$

Compressive Sensing in Practice

Compressive Sensing in Practice

- Tomography in medical imaging
 - each projection gives you a set of Fourier coefficients
 - fewer measurements mean
 - more patients
 - sharper images
 - less radiation exposure
- Wideband signal acquisition
 - framework for acquiring sparse, wideband signals
 - ideal for some surveillance applications
- "Single-pixel" camera

"Single-Pixel" Camera

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk – Sig. Proc. Mag. 2008]

TI Digital Micromirror Device

Image Acquisition

Original

 16384 Pixels
 16384 Pixels

 1600 Measurements
 3300 Measurements

 (10%)
 (20%)

65536 Pixels 1300 Measurements (2%)

65536 Pixels 3300 Measurements (5%)

"Single-Pixel" Camera

Conclusions

Compressive sensing

- exploits signal sparsity/compressibility
- integrates sensing with compression
- enables new kinds of imaging/sensing devices
- Near/Medium-term applications
 - tomography/medical imaging
 - imagers where CCDs and CMOS arrays are blind
 - wideband A/D converters

