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Can we really acquire analog signals with “CS”?



An Apology for CS

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of finite-bit quantization

Objection 4: Analog sparse representations



Objection 1

For any bandlimited signal      ,



Potential Obstacles 
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Recovery in noise

Suppose that we now observe

and that     satisfies the RIP, i.e., for all   

If     is white Gaussian noise with variance    ,
then



White Signal Noise

Suppose     satisfies the RIP and has orthogonal and 
equal-norm rows.  If    is white noise with variance     , 
then       is white noise with variance         .

What if our signal is contaminated with noise?

3dB loss per octave 
of subsampling



Noise Folding

[D, Laska, Treichler, and Baraniuk, 2011]



Can We Do Better?

• Better choice of    ?

• Better recovery algorithm?

If we knew the support of    a priori, then we could 
achieve

Is there any way to match this performance without 
knowing the support of    in advance?



No!

Ingredients in proof:

• Fano’s inequality

• Random construction of packing set of sparse points

• Matrix Bernstein inequality to bound empirical covariance 
matrix of packing set

[Candès and D, 2011]

Theorem:

If                   with                      , then

If                     with                      , then
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Signal Recovery with Quantization

• Finite-range quantization leads to saturation and
unbounded errors

• Quantization noise changes as we change the 
sampling rate



Saturation Strategies

• Rejection: Ignore saturated measurements

• Consistency: Retain saturated measurements.
Use them only as inequality constraints on the 
recovered signal

• If the rejection approach works, the consistency 
approach should automatically do better



• The RIP is not sufficient for the rejection approach

• Example:          

– perfect isometry

– every measurement must be kept

• We would like to be able to say that any submatrix
of     with sufficiently many rows will still satisfy the 
RIP

• Strong, adversarial form of “democracy”

Rejection and Democracy



• Step 1: Concatenate the identity to

Sketch of Proof

Theorem:

If    is a sub-Gaussian matrix with

then        satisfies the RIP of order      with 
probability at least               . 

[D, Laska, Boufounos, and Baraniuk, 2009]



• Step 2: Combine with the “interference cancellation” 
lemma

Sketch of Proof

• The fact that          satisfies the RIP implies that if 
we take     extra measurements,  then we can delete 

arbitrary rows of     and retain the RIP

[D, Laska, Boufounos, and Baraniuk, 2009]



Rejection In Practice
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Benefits of Saturation

Saturation
Rate

SNR (dB)

dB
gain

[Laska, Boufounos, D, and Baraniuk, 2011]



Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a 
higher bit-depth, allowing for potential gains

[Le et al. 2005]



Empirical SNR Improvement

[D, Laska, Treichler, and Baraniuk, 2011]
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Candidate Analog Signal Models

Multitone model:

– periodic signal

– DFT with    tones

– unknown amplitude

Multiband model:

– aperiodic signal

– DTFT with    bands
of bandwidth

– unknown spectra



Discrete Prolate Spheroidal
Sequences (DPSS’s)

DPSS’s (Slepian sequences)

Given     and           , the DPSS’s are a
collection of     real-valued discrete-time

sequences                                   such

that for all  

The DPSS’s are perfectly bandlimited, but when
they are highly concentrated in time.



DPSS Eigenvalue Concentration

The first            eigenvalues .
The remaining eigenvalues .



DPSS Examples



Why DPSS’s?

Suppose that we wish to minimize

over     where                                                     .

Optimal subspace of dimension    is the
one spanned by the first    DPSS vectors.



Approximation Performance



DPSS’s for Passband Signals



DPSS Dictionaries for CS

Construct dictionary     as

where      is the matrix of the first    DPSS’s modulated 
to                                              .

sparsely and accurately 
represents most sampled 

multiband signals.

[D and Wakin, 2011]



occupied bands

DPSS Dictionaries and the RIP

Theorem:
Let                               .  Suppose that     is 
sub-Gaussian and that the      are constructed 
with                         .  If 

then with high probability       will satisfy the 
RIP of order   .

[D and Wakin, 2011]



Block-Sparse Recovery

Nonzero coefficients of     should be clustered in blocks 
according to the occupied frequency bands

This can be leveraged to reduce the required number 
of measurements and improve performance through 
“model-based CS”

–Baraniuk et al. [2008, 2009, 2010]

–Blumensath and Davies [2009, 2011]



Recovery: DPSS vs DFT

[D and Wakin, 2011]



Summary

• It is indeed possible to deal with analog signals using 
the traditional discrete CS formalism

• Noise can be an issue, but this is a fundamental 
limitation independent of the techniques used in CS

• Quantization noise can be less harmful than might be 
expected – CS allows for new design tradeoffs

• To give CS a fair chance we must both:

– carefully design the sparsity basis 

– exploit any additional structure
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