Compressive Sensing in Practice: Noise, Quantization, and Real-World Signals

Mark A. Davenport

Stanford University Department of Statistics

FoCM 2011 Workshop on Computational Harmonic Analysis, Image and Signal Processing

Supported by National Science Foundation

Can we really acquire analog signals with "CS"?

An Apology for CS

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of finite-bit quantization

Objection 4: Analog sparse representations

Objection 1

For any bandlimited signal x(t),

$$y[m] = \langle \phi_m(t), x(t) \rangle$$

= $\sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$
: :

Potential Obstacles

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of finite-bit quantization

Objection 4: Analog sparse representations

Recovery in noise

Suppose that we now observe

$$y = \Phi x + e$$

and that Φ satisfies the RIP, i.e., for all $||x||_0 \leq S$

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2.$$

$$\|\widehat{x} - x\|_2 \le C \|e\|_2$$

If e is white Gaussian noise with variance σ^2 , then $\|\widehat{x} - x\|_2^2 \leq C'S\sigma^2\log N$

White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n)$$

Suppose Φ satisfies the RIP and has orthogonal and equal-norm rows. If n is white noise with variance σ^2 , then Φn is white noise with variance $\sigma^2 \frac{N}{M}$.

$$\left\|\widehat{x} - x\|_2^2 \le C' \frac{N}{M} S \sigma^2 \log N\right\|$$

 $SNR = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right) \longrightarrow \begin{array}{c} \text{3dB loss per octave} \\ \text{of subsampling} \end{array}$

Noise Folding

[D, Laska, Treichler, and Baraniuk, 2011]

Can We Do Better?

- Better choice of Φ ?
- Better recovery algorithm?

If we knew the support of x *a priori*, then we could achieve

$$\|\widehat{x} - x\|_2^2 \approx \frac{S}{M} S\sigma^2 \ll C' \frac{N}{M} S\sigma^2 \log N$$

Is there any way to match this performance without knowing the support of x in advance?

$$R^*_{\mathrm{mm}}(\Phi) = \inf_{\widehat{x}} \sup_{\|x\|_0 \le S} \mathbb{E}\left[\|\widehat{x}(y) - x\|_2^2\right]$$

No!

Theorem:
If
$$y = \Phi x + e$$
 with $e \sim \mathcal{N}(0, \sigma^2 I)$, then
 $R_{\mathrm{mm}}^*(\Phi) \geq C \frac{N}{\|\Phi\|_F^2} S \sigma^2 \log(N/S)$.
If $y = \Phi(x+n)$ with $n \sim \mathcal{N}(0, \sigma^2 I)$, then
 $R_{\mathrm{mm}}^*(\Phi) \geq C \frac{N}{M} S \sigma^2 \log(N/S)$.

Ingredients in proof:

- Fano's inequality
- Random construction of packing set of sparse points
- Matrix Bernstein inequality to bound empirical covariance matrix of packing set

[Candès and D, 2011]

Potential Obstacles

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of finite-bit quantization

Objection 4: Analog sparse representations

Signal Recovery with Quantization

- Finite-range quantization leads to saturation and unbounded errors
- Quantization noise changes as we change the sampling rate

Saturation Strategies

• **Rejection:** Ignore saturated measurements

- **Consistency:** Retain saturated measurements. Use them only as inequality constraints on the recovered signal
- If the rejection approach works, the consistency approach should automatically do better

Rejection and Democracy

- The RIP is *not sufficient* for the rejection approach
- Example: $\Phi = I$
 - perfect isometry
 - every measurement must be kept
- We would like to be able to say that any submatrix of Φ with sufficiently many rows will still satisfy the RIP

• Strong, *adversarial* form of "democracy"

Sketch of Proof

• Step 1: Concatenate the identity to Φ

Theorem:

If Φ is a sub-Gaussian matrix with

$$M = O\left(S \log\left(\frac{N}{S}\right)\right)$$

then $[\Phi \ I]$ satisfies the RIP of order S with probability at least $1-3e^{-CM}$

[D, Laska, Boufounos, and Baraniuk, 2009]

Sketch of Proof

• Step 2: Combine with the "interference cancellation" lemma

• The fact that $[\Phi\ I]$ satisfies the RIP implies that if we take D extra measurements, then we can delete O(D) arbitrary rows of Φ and retain the RIP

[D, Laska, Boufounos, and Baraniuk, 2009]

Rejection In Practice

SNR =
$$10 \log_{10} \left(\frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

Benefits of Saturation

[Laska, Boufounos, D, and Baraniuk, 2011]

Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bit-depth, allowing for potential gains

[Le et al. 2005]

Empirical SNR Improvement

[D, Laska, Treichler, and Baraniuk, 2011]

Potential Obstacles

Objection 1: CS is discrete, finite-dimensional

Objection 2: Impact of signal noise

Objection 3: Impact of finite-bit quantization

Objection 4: Analog sparse representations

Candidate Analog Signal Models

Multitone model:

- periodic signal
- DFT with S tones
- unknown *amplitude*

Multiband model:

- aperiodic signal
- DTFT with K bands of bandwidth $B_{\rm band}$
- unknown *spectra*

Discrete Prolate Spheroidal Sequences (DPSS's)

DPSS's (Slepian sequences)

Given N and $W \leq \frac{1}{2}$, the DPSS's are a collection of N real-valued discrete-time sequences $s_{N,W}^{(0)}, s_{N,W}^{(1)}, \ldots, s_{N,W}^{(N-1)}$ such that for all ℓ

$$\mathcal{B}_W(\mathcal{T}_N(s_{N,W}^{(\ell)})) = \lambda_{N,W}^{(\ell)} s_{N,W}^{(\ell)}.$$

The DPSS's are perfectly bandlimited, but when $\lambda_{N,W}^{(\ell)} \approx 1$ they are highly concentrated in time.

DPSS Eigenvalue Concentration

DPSS Examples N = 1024 $W = \frac{1}{4}$

Why DPSS's?

Suppose that we wish to minimize

$$\frac{1}{2W} \cdot \int_{-W}^{W} \|e_f - P_Q e_f\|_2^2 df$$

over Q where $e_f := \left[e^{j2\pi f0}, e^{j2\pi f}, \dots, e^{j2\pi f(N-1)}\right]^T$.

Optimal subspace of dimension k is the one spanned by the first k DPSS vectors.

$$\frac{1}{2W} \cdot \int_{-W}^{W} \|e_f - P_Q e_f\|_2^2 \, df = \frac{1}{2W} \sum_{\ell=k}^{N-1} \lambda_{N,W}^{(\ell)}$$

Approximation Performance

$$SNR = 20 \log_{10} \left(\frac{\|e_f\|}{\|e_f - P_Q e_f\|} \right) dB$$

DPSS's for Passband Signals

DPSS Dictionaries for CS

Construct dictionary Ψ as

$$\Psi = [\Psi_1, \Psi_2, \dots, \Psi_J]$$

where Ψ_i is the matrix of the first k DPSS's modulated to $f_i = -\frac{1}{2} + (i + \frac{1}{2}) (B_{\text{band}}/B_{\text{nyq}})$.

 Ψ sparsely and accurately represents *most* sampled multiband signals.

[D and Wakin, 2011]

DPSS Dictionaries and the RIP

Theorem:

Let $W = \frac{1}{2}(B_{\text{band}}/B_{\text{nyq}})$. Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k = (1 - \epsilon)2NW$. If

 $M \ge CS \log(N/S)$

then with high probability $\Phi\Psi$ will satisfy the RIP of order S.

K occupied bands $\implies S \approx KNB_{\text{band}}/B_{\text{nyq}}$

$$\frac{M}{N} \ge C' \frac{KB_{\text{band}}}{B_{\text{nyq}}} \log\left(\frac{B_{\text{nyq}}}{KB_{\text{band}}}\right)$$

[D and Wakin, 2011]

Block-Sparse Recovery

Nonzero coefficients of $\alpha\,$ should be clustered in blocks according to the occupied frequency bands

$$x = [\Psi_1, \Psi_2, \dots, \Psi_J] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_J \end{bmatrix}$$

This can be leveraged to reduce the required number of measurements and improve performance through "model-based CS"

- -Baraniuk et al. [2008, 2009, 2010]
- -Blumensath and Davies [2009, 2011]

Summary

- It is indeed possible to deal with analog signals using the traditional discrete CS formalism
- Noise can be an issue, but this is a fundamental limitation independent of the techniques used in CS
- Quantization noise can be less harmful than might be expected – CS allows for new design tradeoffs
- To give CS a fair chance we must both:
 - carefully design the sparsity basis
 - exploit any additional structure

References

- E.J. Candès and M.A. Davenport , "How well can we estimate a sparse vector?" *Preprint*, April 2011.
- M.A. Davenport, J.N. Laska, J.R. Treichler, and R.G. Baraniuk, "The pros and cons of compressive sensing for wideband signal acquisition: Noise folding vs. dynamic range," *Preprint*, April 2011.
- J.N. Laska, P.T. Boufounos, M.A. Davenport, and R.G. Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing," to appear in Appl. Comput. Harmon. Anal., 2011.
- M.A. Davenport, J.N. Laska, P.T. Boufounos, and R.G. Baraniuk, "A simple proof that random matrices are democratic," Rice University ECE Technical Report TREE 0906, November 2009.
- M.A. Davenport and M.B. Wakin, "Reconstruction and cancellation of sampled multiband signals using discrete prolate spheroidal sequences," SPARS 2011.