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Matrix Completion 

Under what assumptions can we  

recover the original matrix?  
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Low-Rank Matrices 

Singular value decomposition: 

degrees of freedom 
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Low-Rank Matrix Recovery 

Given: 

• a           matrix     of rank  

• samples of     on the set    : 

 

How can we recover     ? 

 

 

 

 

 

Can we replace this with something computationally feasible? 
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Nuclear Norm Minimization 

Convex relaxation! 

 

Replace               with                         

 

 

 

 

 

 

If                           , this procedure can recover      ! 

cM = arg inf
X:X­=Y
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Applications 

• Collaborative Filtering (aka the “Netflix Problem”) 

 

• Recovery of incomplete survey data 

 

• Analysis of voting data 

 

• Sensor localization 

 

• Quantum state tomography 

 

• … 

 



Matrix Completion in Practice 

• Noise 

 

 

• Quantization 

– Netflix/Amazon: Ratings are integers between 1 and 5 

– Survey responses: True/False, Yes/No, Agree/Disagree 

– Voting data: Yea/Nay 

– Quantum state tomography: Binary outcomes 

 

Y = (M +Z)­



What’s the Problem? 



1-Bit Matrix Completion 

Extreme case 

 

 

Claim: Recovering      from     is impossible! 

 

 

 

 

 

No matter how many samples we obtain, all we can learn is 

whether           or 

Y = sign(M­)
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Is There Any Hope? 

If we consider a noisy version of the problem, recovery 

becomes feasible! 

 

 

 

 

 

 

 

Fraction of positive/negative observations tells us something 

about 

 

Example of the power of dithering 

M + Z =

2
664

¸+ Z1;1 ¸+Z1;2 ¸+Z1;3 ¸+ Z1;4

¸+ Z2;1 ¸+Z2;2 ¸+Z2;3 ¸+ Z2;4

¸+ Z3;1 ¸+Z3;2 ¸+Z3;3 ¸+ Z3;4

¸+ Z4;1 ¸+Z4;2 ¸+Z4;3 ¸+ Z4;4

3
775

¸

Y = sign(M­+Z­)



Observation Model 

For               we observe 

 

 

 

 

If     behaves like a CDF, then this is equivalent to 

 

 

where       is drawn according to a suitable distribution 

 

We will assume that      is drawn uniformly at random 

Yi;j =

(
+1 with probability f(Mi;j)

¡1 with probability 1¡ f(Mi;j)
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Examples 

• Logistic regression / Logistic noise 

 

 

 

 

 

• Probit regression / Gaussian noise 

f(x) =
ex

1 + ex

f(x) = ©(x=¾)

Zi;j »N(0; ¾
2
)

Zi;j » logistic distribution 



Maximum Likelihood Estimation 

Log-likelihood function: 

 

 

 

 

F(X) =
X

(i;j)2­+

log(f(Xi;j)) +
X

(i;j)2­¡

log(1¡ f(Xi;j))

cM = argmax
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Recovery of the Matrix 

Theorem (Upper bound achieved by convex ML estimator) 

Assume that                        and                  . If     is chosen at 

random with                            , then with high probability 

 

 

 

where 

 

 

 

 

 

Is this bound tight? 
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Recovery of the Matrix 

Theorem (Upper bound achieved by convex ML estimator) 

Assume that                        and                  . If     is chosen at 

random with                            , then with high probability 

 

 

 

Theorem (Lower bound on any estimator) 

For any recovery algorithm      there exist     satisfying the 

assumptions above such that for any set     with             , we 

have (under mild technical assumptions) that 
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Tiny Sketch of Proof of Upper Bound 

Recall that we maximize the log-likelihood 

• For a fixed matrix   , 
 

• Lemma: Let                                       .  With high 

probability, 
 

• By definition,   

 

 

 

 

 

• Thus, 

X E [F(M)¡F(X)] = c ¢D(f(X)jjf(M))
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Synthetic Simulations 
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MovieLens Data Set 

• 100,000 movie ratings on a scale from 1 to 5 

• Convert to binary outcomes by comparing each rating to 

the average rating in the data set 

• Evaluate by checking if we predict the correct sign 

• Training on 95,000 ratings and testing on remainder 

– “standard” matrix completion: 60% accuracy 

 

1: 64% 2: 56%  3: 44%  4: 65%  5: 74%  

 

– 1-bit matrix completion: 73% accuracy 

 

1: 79% 2: 73%  3: 58%  4: 75%  5: 89% 



Conclusions 

• 1-bit matrix completion is hard! 
 

• What did you really expect? 
 

• Sometimes 1-bit is all we can get… 
 

• We have algorithms that are near optimal 

 

• Open questions 
 

– Are there simpler/better/faster/stronger algorithms? 
 

– What about 2.32-bit matrix completion? 

 



Thank You! 


