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 How should we design A to ensure that y contains as much
information about x as possible?

« What algorithms do we have for recovering x from y ?



How To Design A ?

Prototypical sensing model:

y = Ax + 2 z ~ N(0,0°%1)

Constrain A to have unit-norm rows

Pick A at random!
- i.i.d. Gaussian entries (with variance 1/n )
- random rows from a unitary matrix

As long as m = O(klog(n/k)), with high probability a
random A will satisfy the restricted isometry property

Deep connections with Johnson-Lindenstrauss Lemma
- see Baraniuk, Davenport, DeVore, and Wakin (2008)



How To Recover x?

e Lots and lots of algorithms
- f/1-minimization
- greedy algorithms (matching pursuit, CoSaMP, IHT)

If A satisfies the RIP, ||z]jo < k, and \
y = Ax + z with z ~ N(0,0°I), then

T = argmin ||z[|
:L"ER”

s.t. JA*(y — Ax')||s < c/logno

satisfies

\_

E|z — |2 < O ko?logn.

m
[Candes and Tao - ZOOSy




Room For Improvement?
There exists matrices A such that for any (sparse) x we have

E |z —z||3 < O~ ko? log n.
m

yi = (@i, T) + 2i
A

a; and x are almost orthogonal

« We are using most of our “sensing power” to sense entries
that aren’t even there!

e Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Can We Do Better?

ﬁ' heorem \

For any matrix A (with unit-norm rows) and any
recovery procedure z, there exists an x with||z||o < k
such that if y = Az + z with z ~ NV(0,0°%I), then

~ N
E||z(y) — z||5 > C'—ko* log(n/k).

o " /

Compressive sensing is already operating at the limit

[Candes and Davenport - 2011]



Intuition

Suppose that y = = + z with z ~ N(0,1) and that £ =1

E||Z(y) — =ll3 > C"logn

Viogn |2lloo = /logn
N I i

l ‘ ll\ | {1




Proof Recipe

Ingredients (Makes o* = 1 servings)

« Lemma 1: There exists a set X of £ -sparse vectors such that
X| = (n/k)*/*

Ha:'@ —xzjll2 > 3 forall z;,z; € X

e S x ——I|\< 5 for some 3 > 0

- Lemma 2: Define R} (A) =inf sup E[|z(Az+ z2) —z|3].

T zllo<k

Suppose X' is a set of £ -sparse vectors such that
i — x5 > 8nR,.(A) forall z;,2; € X.
Then 3 log [X] — 1 < g 37, - | Az — Awjf3.

Instructions
Combine ingredients and add a dash of linear algebra.



The Details

S Q= S
flog(n/k) =2 < [ T, 1w — A,

— Ty (A*A (ﬁ > i@ —xj) (@i — 333)*))
= Tr (A*A (2(Q — pp*)))

< 2Tr (A*AQ)

< 2Tr (A*A) ||Q|

< 2 A[} - 16K}, (A)(1 + )

) klog(n/k)
- R (A) 2 128(1 + B)[|A[1%




Lemma 1

Lemma 1: There exists a set X’ of k-sparse points such that
X| = (n/k)*/*

xr; — ZlZ‘jHQ > % for all Ti, Tj € X

Ny 2 wiwl — I < 5 for some 8 > 0

Strategy
Construct X by sampling (with replacement) from

U = {3: e {0,/1/k, —/1/kY" : |lz]|o < k}
Repeat for |X| = (n/k)*/* iterations.
With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]
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Adaptive Sensing

Think of sensing as a game of 20 questions

. P

m =

Simple strategy: Use m /2 measurements to find the support,
and the remainder to estimate the values.



Thought Experiment

Suppose that after m /2 measurements we have perfectly
estimated the support.

m/2k< i
= l' u H +

 Sunfls

%, .

E(z; —x;)° = Ea N

. 2k
E|z—z|5 = —ko’< %kaQ log n
m



Does Adaptivity Really Help?

Sometimes...

e Noise-free measurements, but non-sparse signal
- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(klog(n/k)) to
O(kloglog(n/k)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

E|7—z|2 = Zko?
m > Which is it?
~ k ’
E||z—z|3 = —ko”
m



Which Is It?

Suppose we have a budget of m measurements of the form
Y; = <CL@',ZC> + z; where HCLZHQ =1 and z; ~ N(O,O‘Z)

The vector a; can have an arbitrary dependence on the
measurement history, i.e., (a1,v1),-.., (@Gi—1,Yi—1)

m'neorem \

There exist x with ||z|lo < k such that for any adaptive
measurement strategy and any recovery procedure Z,

Elz(y) — 212 > 0 ko,
[£w) — 2l3 > O ko

Qhus, in general, adaptivity does not significantly helw

[Arias-Castro, Candes, and Davenport - 2011]



Proof Strategy

Step 1: Consider a prior on sparse signals with nonzeros of
amplitude y ~ o+/n/m

Step 2: Show that if given a budget of m measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
7(x) instead of a uniform k-sparse prior:

N 0 with probability 1 — k/n
7 1w >0 with probability k/n



Proof of Main Result

Let S={j:z; #0}and set o =1
For any estimator Z, define S := {j : z;| > 1/2}

Whenever j € S\ S or j € S\ S, |z; —x;] > 11/2

2 2 2
- ar. Mg K
|2 —xl3 2 515\ 51+ IS\ 5| = £-1SAs

B g
) E|j7 -z} > E|SAS]



Proof of Main Result

/Lemma R )
Under the Bernoulli prior, any estimate S satisfies
E@Aﬂzk<1g m).
mn
- /

2
Thus, E||7 — 22 > “ZE|SAS|
2
L2 e [m
4 2V n

Plug in = £,/2 and this reduces to

Vv

4  kn
27 m

L kn
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E|Z -2z >



Key ldeas in Proof of Lemma

Po,i (Y15 Ym) = P(y1, - .. ym|z; = 0)
]P)l,j(yla s 7y’m) — I[D(yla O aym|xj — /U,)

~ k
E|SAS| > — Z(l—HPU Po;llTv)

>k——\/ZPU Po,; |2

2
; IP1; = Pollty < ~-m wmmp E|SAS| > k (1 - £, /g>



Key ldeas in Proof of Lemma

4 )
Pinsker’s Inequality
IP - Qv < VE(P,Q)/2
g W,
T 70
Py — PojllFy < ?OK(IPUJ?IEDl i)+ %K(Pl i+ Poj)
2
H 2
< a4 ZEG%’,J

2

2
m— 11~ Posliy < Y Eal, = o
J "



Adaptivity in Practice




Adaptivity In Practice
Suppose that £ =1 and that z;« =

Binary Search [Iwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logn times, return support
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Experimental Results

[Arias-Castro, Candes, and Davenport - 2011]



Open Questions

No method can succeed when £ =~ \/-* but the binary
search approach succeeds as long as £ > C \/ — loglogn
[Davenport and Arias-Castro - 2012]

Practical algorithms that work well for all values of
Practical algorithms for &£ > 1

New theory for restricted adaptive measurements

- single-pixel camera: 0/1 measurements

- magnetic resonance imaging (MRIl): Fourier measurements
- analog-to-digital converters: linear filter measurements

New sensors and architectures that can actually acquire
adaptive measurements
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