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Sensor Explosion 



Data Deluge 



Ye Olde Data Deluge 

“Paper became so cheap, and  

printers so numerous, that a  

deluge of authors covered  

the land” 
 

Alexander Pope, 1728 



Large Hadron Collider at CERN 

Compact Muon Solenoid detector 

 
 320 terabits per second raw data 

 

 Stop-gap: perform ad-hoc triage  

to 800 Gbps, recording only  

“interesting events” 

  



Data Deluge Challenges 

How can we extract as  

much information as 

possible from a limited  

amount of data? 

How can we extract any  

information at all from  

a massive amount of 

high-dimensional data? 

How can we get our 

hands on as much data  

as possible? 

How can we avoid 

having to acquire so 

much data to begin with? 



Low-Dimensional Structure 

• Visualization 

• Feature extraction/selection 

• Compression 

• Regularization of ill-posed inference problems 

• Underpins compressive sensing 

How can we exploit low-dimensional 

structure to address the challenges  

posed by the “data deluge”? 



Compressive Sensing 

When (and how well) can we  

estimate    from the measurements    ? 

 nonzeros 



How Well Can We Estimate   ? 

• What do we know via compressive sensing? 

– feasible nonadaptive schemes with known performance 

guarantees 

 

• Can we improve upon compressive sensing? 

– lower bound on the performance of any nonadaptive scheme 

 

• What are the benefits of adaptivity? 

– lower bound on the performance of any adaptive scheme 

– practical implications 



Compressive Sensing 

support 

values 

• How should we design      to ensure that    contains as much 

information about    as possible?       

 

• What algorithms do we have for recovering    from    ? 

 nonzeros 

[Candès, Romberg, and Tao; Donoho - 2005] 



How To Design     ? 

Prototypical sensing model: 

 

 

• Constrain     to have unit-norm rows 
 

• Pick     at random! 

– i.i.d. Gaussian entries (with variance       ) 

– random rows from a unitary matrix 
 

• As long as                             , with high probability a 

random     will satisfy the restricted isometry property 



Restricted Isometry Property (RIP) 



How To Design     ? 

Prototypical sensing model: 

 

 

• Constrain     to have unit-norm rows 
 

• Pick     at random! 

– i.i.d. Gaussian entries (with variance       ) 

– random rows from a unitary matrix 
 

• As long as                             , with high probability a 

random     will satisfy the restricted isometry property 
 

• Deep connections with Johnson-Lindenstrauss Lemma 

– see Baraniuk, Davenport, DeVore, and Wakin (2008) 

 



How To Recover    ?  

• Lots and lots of algorithms 

–    -minimization (Lasso, Dantzig selector) 

– greedy algorithms (matching pursuit, forward selection) 

If     satisfies the RIP,               , and 

                   with                       , then 

 

 

 
 

satisfies 

 

 

 [Candès and Tao - 2005] 



How Well Can We Estimate   ? 

• What do we know via compressive sensing? 

 

        For any    we can achieve 

 

• Can we improve upon compressive sensing? 

 

 

 

• What are the benefits of adaptivity? 



Room For Improvement? 

Let      denote the      row of  

 

 

 

 

 

 

• We are using most of our “sensing power” to sense entries 

that aren’t even there! 
 

• Tremendous loss in signal-to-noise ratio (SNR) 
 

• It’s hard to imagine any way to avoid this… 

and    are almost orthogonal 



Minimax Lower Bounds 

• There exists matrices     such that for any (sparse)    we 

have 

 

 

• We would like to know if there exists any     or any 

recovery algorithm that can do much better for all 

 

• Minimax lower bound: For any     and any   , there exists a      

   such that 

 

 

• The bound will be determined by the worst-case    



Can We Do Better? 

Theorem  

For any matrix     (with unit-norm rows) and any 

recovery procedure   , there exists a    with   

such that if                    with                      , then 

[Candès and Davenport - 2011] 

Compressive sensing is already operating at the limit 



Intuition 

Suppose that                  with                    and that  



Proof Recipe  

• Construct a set     of   -sparse vectors such that 

–   
 

–                        for all  
 

–                                    

 

• Scale this set to the worst-case amplitude and use Fano’s 

Inequality to show that if    is selected uniformly at random 

from    , then the Bayes risk is large 

 

•     can be constructed simply by picking   -sparse vectors at 

random 

 



How Well Can We Estimate   ? 

• What do we know via compressive sensing? 

 

        For any    we can achieve 

 

• Can we improve upon compressive sensing? 

 

        There exist    such that  

 

• What are the benefits of adaptivity? 



Think of sensing as a game of 20 questions 

 

 

 

 

 

 

 

 

Simple strategy: Use         measurements to find the support, 

and the remainder to estimate the values.  

 

Adaptivity to the Rescue? 



Thought Experiment 

Suppose that after         measurements we have perfectly 

estimated the support.  



Does Adaptivity Really Help? 

Sometimes… 

• Noise-free measurements, but non-sparse signal 

– adaptivity doesn’t help if you want a uniform guarantee 

– probabilistic adaptive algorithms can reduce the required 

number of measurements from                       to 

                 [Indyk et al. – 2011] 

 

• Noisy setting 

– distilled sensing [Haupt et al. – 2007, 2010] 

– adaptivity can reduce the estimation error to 

 

Which is it? 



Which Is It? 

Suppose we have a budget of     measurements of the form 

                       where                and                        
 

The vector     can have an arbitrary dependence on the 

measurement history, i.e.,   

  

[Arias-Castro, Candès, and Davenport - 2011] 

Theorem   

There exist    with                such that for any adaptive 

measurement strategy and any recovery procedure   , 

 

 

Thus, in general, adaptivity does not significantly help! 



Proof Strategy 

Step 1:  Consider sparse signals with nonzeros of amplitude 

                    
 

Step 2:  Show that if given a budget of    measurements, 

    you cannot detect the support very well    
 

Step 3:  Immediately translate this into a lower bound on the  

         MSE 
 

To make things simpler, we will consider a Bernoulli prior            

         instead of a uniform   -sparse prior: 



Proof of Main Result 

Let                           and set 
 

For any estimator   , define 
 

Whenever                 or               ,       

 

 



Proof of Main Result 

 

 

 

 

 

Thus,  

 

 

 

Plug in                  and this reduces to 

Lemma 

Under the Bernoulli prior, any estimate     satisfies 



Key Ideas in Proof of Lemma 



Pinsker’s Inequality 

 

 

Key Ideas in Proof of Lemma 



How Well Can We Estimate   ? 

• What do we know via compressive sensing? 

 

        For any    we can achieve 

 

• Can we improve upon compressive sensing? 

 

        There exist     such that  

 

• What are the benefits of adaptivity? 

 

      Minimal? 



Adaptivity In Practice 

Suppose that            and that  

 

Binary Search [Iwen and Tewfik – 2011, Davenport and Arias-Castro – 2012] 

– split measurements into          stages  

– in each stage, use measurements to decide if the nonzero is 

in the left or right half of the “active set” 

– after subdividing          times, return support 
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Adaptivity In Practice 

Suppose that            and that  

 

Binary Search [Iwen and Tewfik – 2011, Davenport and Arias-Castro – 2012] 

– split measurements into          stages  

– in each stage, use measurements to decide if the nonzero is 

in the left or right half of the “active set” 

– after subdividing          times, return support 



Experimental Results 

[Arias-Castro, Candès, and Davenport - 2011] 

nonadaptive 
adaptive 



Looking Forward 



Adaptivity in Practice 

• No method can succeed when               , but the binary  

search approach succeeds as long as  

         [Davenport and Arias-Castro - 2012] 

 

• Practical algorithms that work well for all values of 
 

• New theory for restricted adaptive measurements 

– single-pixel camera: 0/1 measurements 

– magnetic resonance imaging (MRI): Fourier measurements 

– analog-to-digital converters: linear filter measurements 
 

• New sensors and architectures that can actually acquire 

adaptive measurements  

 

 

 



Beyond Recovery 

When and how can we directly solve inference problems 
directly from measurements? 

 

 

 

 

 

 

  

• “Compressive signal processing” 
 

• Links with machine learning  

– Johnson-Lindenstrauss lemma and geometry preservation 

– quantized compressive sensing and logistic regression  

Compressive 

measurement system 

Target Tracking 

Target Detection 

Signal Recovery 

Signal Identification 



Beyond Sparsity 

• Learned dictionaries, structured sparsity, models for 

continuous-time signals 
 

• Multi-signal models  

– e.g., sensor networks/arrays, multi-modal data, … 
 

• Low-rank matrix models 
 

• Manifold/parametric models 

Acquisition 
 

• how to design 
• practical devices 
• adaptivity 

Recovery 
 

• practical algorithms 
• robust  
• stable 

Inference 
 

• classification 
• estimation 
• learning 
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