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Sensor Explosion
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Ye Olde Data Deluge

/“Paper became so cheap, and\
printers so numerous, that a
deluge of authors covered

the land”

\ Alexander Pope, 1728)




Large Hadron Collider at CERN

Compact Muon Solenoid detector

320 terabits per second raw data

Stop-gap: perform ad-hoc triage
to 800 Gbps, recording only
“interesting events”



Data Deluge Challenges

\_

How can we avoid
having to acquire so
much data to begin with?

J

can we extrac

amount of data

!

How can we extract any
information at all from
a massive amount of

L ) ,
_ high-dimensional data? y




Low-Dimensional Structure

-

How can we exploit low-dimensional
structure to address the challenges
posed by the “data deluge”?

~N

Visualization

Feature extraction/selection

Compression

Regularization of ill-posed inference problems
Underpins compressive sensing



Compressive Sensing
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When (and how well) can we
estimate 6 from the measurements y?




How Well Can We Estimate 6?

 What do we know via compressive sensing?

- feasible nonadaptive schemes with known performance
guarantees

e Can we improve upon compressive sensing?
- lower bound on the performance of any nonadaptive scheme

 What are the benefits of adaptivity?
- lower bound on the performance of any adaptive scheme
- practical implications



Compressive Sensing

<
N

support
- values

k nonzeros

e How should we design X to ensure that y contains as much
information about 6 as possible?

« What algorithms do we have for recovering 6 from y ?

[Candes, Romberg, and Tao; Donoho - 2005]



How To Design X ?

Prototypical sensing model:

y=X0+z2 z ~ N(0,0°%1)

e Constrain X to have unit-norm rows

e Pick X at random!

- i.i.d. Gaussian entries (with variance 1/p)
- random rows from a unitary matrix

e Aslong as n = O(klog(p/k)), with high probability a
random X will satisfy the restricted isometry property



Restricted Isometry Property (RIP)
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How To Design X ?

Prototypical sensing model:

y=X0+z2 z ~ N(0,0°%1)

Constrain X to have unit-norm rows

Pick X at random!
- i.i.d. Gaussian entries (with variance 1/p)
- random rows from a unitary matrix

As long as n = O(klog(p/k)), with high probability a
random X will satisfy the restricted isometry property

Deep connections with Johnson-Lindenstrauss Lemma
- see Baraniuk, Davenport, DeVore, and Wakin (2008)



How To Recover 67

e Lots and lots of algorithms
- ¢1-minimization (Lasso, Dantzig selector)
- greedy algorithms (matching pursuit, forward selection)

ﬁX satisfies the RIP, ||0]|p < k, and \
y = X0+ z with z ~ N(0,0°I), then

f = argmin ||0'||;
0’ cRP

s.t. || X (y — X0') || < cy/logpo
satisfies

E ||§— 05 < 0L ko? log p.
n

\ [Candes and Tao - ZOOSy




How Well Can We Estimate 0?

« What do we know via compressive sensing?
For any 0 we can achieve E [0 — 0|2 < CZko?logp
(g

e Can we improve upon compressive sensing?

 What are the benefits of adaptivity?



Room For Improvement?

Let z; denote the i*" row of X

yi = (i, 0) + 2

1

x; and 6 are almost orthogonal

 We are using most of our “sensing power” to sense entries
that aren’t even there!

e Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Minimax Lower Bounds

There exists matrices X such that for any (sparse) 6 we
have

E|6 - 03 < L ko log p.
n

We would like to know if there exists any X or any
recovery algorithm that can do much better for all 6

Minimax lower bound: For any X and any 5, there exists a
6 such that

E[0-013 > °

The bound will be determined by the worst-case 6



Can We Do Better?

ﬁ' heorem \

For any matrix X (with unit-norm rows) and any
recovery procedure 6, there exists a 6 with ||0||p < &
such that if y = X6 + z with z ~ N (0,0°1), then

E|6(y) — 6]|2 > c'gw log(p/k).

o /

Compressive sensing is already operating at the limit

[Candes and Davenport - 2011]



Intuition

Suppose that y =6 + z with z ~ AN(0,1) and that £ =1

E[|6(y) — 0[5 > C'logp

V/1ogp 2]l & v/og p
N 1 i

l ‘ ll\ | {1




Proof Recipe

e Construct a set © of k-sparse vectors such that
- 18] = (p/k)*/*

- HQZ — 9j||2 Z % for all 97;,93' €06
1 * A~ 1
e Zz 0,07 ~ pI
e Scale this set to the worst-case amplitude and use Fano’s

Inequality to show that if 8 is selected uniformly at random
from ©, then the Bayes risk is large

e O can be constructed simply by picking k-sparse vectors at
random



How Well Can We Estimate 6?

 What do we know via compressive sensing?
For any 6 we can achieve E||6 — 0|2 < C%kaz log p
e Can we improve upon compressive sensing?
There exist § such that I [|§ — 9|2 > c’%m? log(p/k)

 What are the benefits of adaptivity?



Adaptivity to the Rescue?

Think of sensing as a game of 20 questions

N

m =

+ 8

Simple strategy: Use n/2 measurements to find the support,
and the remainder to estimate the values.



Thought Experiment

Suppose that after n/2 measurements we have perfectly
estimated the support.

n/2k < -
= l' u H +
i
) 2 2k o :
E (9@ — 9@) — ZO’ —
2k

E (6 - 6]} = —ko? < %kc;? log p



Does Adaptivity Really Help?

Sometimes...

e Noise-free measurements, but non-sparse signal

- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(klog(p/k)) to
O(kloglog(p/k)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

Ef— 0|2 = Lko?

& > Which is it?
E0—0]2 = " ko

mn



Which Is It?

Suppose we have a budget of n» measurements of the form
y; = (5,0) + z; where ||z;]l2 =1and z ~ N(0,0%)

The vector x; can have an arbitrary dependence on the
measurement history, i.e., (z1,91),..., (Ti—1,¥i—1)

m'neorem \

There exist 6 with ||0||o < k such that for any adaptive
measurement strategy and any recovery procedure 6,

E [6(y) - 0|13 > C"ko®

Qhus, in general, adaptivity does not significantly helw

[Arias-Castro, Candes, and Davenport - 2011]



Proof Strategy

Step 1: Consider sparse sighals with nonzeros of amplitude
po\/p/n

Step 2: Show that if given a budget of n measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
7(6) instead of a uniform k-sparse prior:

0 _ 0 with probability 1 — k/p
7l u >0 with probability k/p



Proof of Main Result

Let S={j: 0, #0} and set o° =1
For any estimator 6, define S := {; : |f9}\ > u/2}

WheneverjeS\g orjeg\S, !@—9j|2u/2

- 2 R 2 2
66113 = 5-15\ S| + 5215\ 8| = =-15As|

A 2 AN
) E(0-0|3>E|SAS]



Proof of Main Result

/Lemma R )
Under the Bernoulli prior, any estimate S satisfies
E§A8|2k(1g ”)
p
- /

e 2 s
Thus, E[§— 0|2 > 2-E|SAS
2
N R
4 2\ p

Plug in = £1/£ and this reduces to

E6—0]3> - — >



Key ldeas in Proof of Lemma

PO,j(yla---ayn) P(yl,yan:O)
P1j(W1s--sYn) =Py1, .- ynld; = )

_ k
E|SAS| > » > (A —|P1; —Pojllv)

J
k
>k — ﬁ\/zj: IP1; — Po iy

2
P, |2 il a to/mn
;Hm Pojlltv < 7n mmmp E|SAS| >k (1 _ 5\/;>



Key ldeas in Proof of Lemma

4 )
Pinsker’s Inequality
IP - Qv < VE(P,Q)/2
g W,
T 70
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How Well Can We Estimate 0?

 What do we know via compressive sensing?

For any @ we can achieve E || — 0|2 < C%kaz log p
e Can we improve upon compressive sensing?

There exist 6 such that E||0 — |2 > C’%kaz log(p/k)
 What are the benefits of adaptivity?

Minimal?



Adaptivity In Practice

Suppose that k£ =1 and that 0, =

Binary Search [lwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]

- split measurements into logp stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logp times, return support
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Adaptivity In Practice

Suppose that k£ =1 and that 0, =

Binary Search [lwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]

- split measurements into logp stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logp times, return support
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Adaptivity In Practice

Suppose that k£ =1 and that 0, =

Binary Search [lwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]

- split measurements into logp stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logp times, return support




Adaptivity In Practice

Suppose that k£ =1 and that 0, =

Binary Search [lwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]

- split measurements into logp stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logp times, return support




Experimental Results

p=05l2
n = 256
0% =1
:' "‘w«--.--.-.(— %
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[

[Arias-Castro, Candes, and Davenport - 2011]



Looking Forward




Adaptivity in Practice

No method can succeed when £ ~ \/% but the binary

ag

M p
search approach succeeds as long as = > C \/ ~loglogp
[Davenport and Arias-Castro - 2012]

Practical algorithms that work well for all values of

New theory for restricted adaptive measurements

- single-pixel camera: 0/1 measurements

- magnetic resonance imaging (MRIl): Fourier measurements
- analog-to-digital converters: linear filter measurements

New sensors and architectures that can actually acquire
adaptive measurements



Beyond Recovery

When and how can we directly solve inference problems
directly from measurements?

} —»| Target Detection

—p| Target Tracking
= e L
Compressive =¥

measurement system

Signal Identification

Signal Recovery

e “Compressive signal processing”

e Links with machine learning
- Johnson-Lindenstrauss lemma and geometry preservation
- quantized compressive sensing and logistic regression



Beyond Sparsity

Learned dictionaries, structured sparsity, models for
continuous-time signals

Multi-signal models
- e.g., sensor networks/arrays, multi-modal data, ...

o Low-rank matrix models G L
e Manifold/parametric models
4 . N N [ )
Acquisition Recovery Inference
« how to design X  practical algorithms » classification
 practical devices * robust « estimation
« adaptivit « stable  learnin
Y ) U J 5
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