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Matrix Completion
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 When is it possible to recover the original matrix?

e How can we do this efficiently?

« How many samples will we need?



Low-Rank Matrices

Singular value decomposition:

M=UZV" == ~ dr < d?
degrees of freedom



Collaborative Filtering

The “Netflix Problem”

[Mi,j = how much user ¢ likes movie J ]

Rank 1 model: w; = how much user 2 likes romantic movies
v; = amount of romance in movie )
Mi,j — U3 Vy
Rank 2 model: w,; =how much user 7 likes zombie movies

x; = amount of zombies in movie

Mi,j = UiV + W;T;



Beyond Netflix
Recovery of incomplete survey data
Analysis of voting data
Sensor localization

Quantum state tomography



Low-Rank Matrix Recovery

Given:
e adXxd matrix Mof rank r
« samples of Mon the set {): Y = Mq

How can we recover M?

(" )
M = arginf rank(X)
X:Xq=Y
\_ J

Can we replace this with something computationally feasible?



Nuclear Norm Minimization
Convex relaxation!

d
Replace rank(X) with [ X[, =) |oj
j=1

4 )
M = arginf || X||.

X:Xa=Y
N\ Y,

If |Q2] = O(rd logd), under certain assumptions, this
procedure can recover M !



Matrix Completion in Practice

e Noise
Y=(M+2)q

e Quantization
- Netflix: Ratings are integers between 1 and 5
- Survey responses: True/False, Yes/No, Agree/Disagree
- Voting data: Yea/Nay
- Quantum state tomography: Binary outcomes

Extreme quantization destroys low-rank structure



1-Bit Matrix Completion

Extreme case
Y = sign(Mq)

Claim: Recovering M from Y is impossible!
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No matter how many samples we obtain, all we can learn is
whether A >0 or A <0



1-Bit Matrix Completion

Extreme case
Y = sign(Mq)

Claim: Recovering M from Y is impossible!

M = uwv*

u =sign(u) v =sign(v)



Is There Any Hope?

If we consider a noisy version of the problem, recovery
becomes feasible!
Y = Sign(MQ -+ ZQ)

A A A A
A A A A
M=1x 2 2
A A A A

Fraction of positive/negative observations tells us something
about )\

Example of the power of dithering



Observation Model

For (i,7) € Qwe observe

. +1 with probability f(M; ;)
7] -1 with probability 1 — f(M;,;)

If / behaves like a CDF, then this is equivalent to
Yi,; = sign(M;,; + Zi ;)

where Z;, ;is drawn according to a suitable distribution

We will assume that () is drawn uniformly at random



Examples

» Logistic regression / Logistic noise

X

f(z)

- 1+ e*

Zi.; ~ logistic distribution

e Probit regression / Gaussian noise
f(z) = ®(z/0)

Zi,j ~ N(0,07)



Assumptions
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o If the upper-left corner of M is not sampled, we have no
information

 Solution: Assume that M is “spread”

LMl < /r
| M||oo = max|M; ;| < a~O(1)
1,]



Maximum Likelihood Estimation

Log-likelihood function:

FX)= > log(f(Xiy)+ » log(l— f(Xi,))

4 )

N~

M = arg max F'(X)
bl

s.t. rank(X) <r

\_ /




Maximum Likelihood Estimation

Log-likelihood function:

FX)= > log(f(Xiy)+ » log(l— f(Xi,))

2N )
M = arg max F'(X)
X
1 _
b, — || X ||« <
s.t. X[l < Vi
[X[loo < @

o /




Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that L ||M||. < /7 and || M||e < a. If © is chosen at
random with E(TQ| = m > dlogd, then with high probability

rd
||M M|% < CaLaBat] -
m

where

. 1'(@)

sup
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Is this bound tight?



Recovery of the Matrix

Theorem (Upper bound achieved by convex ML estimator)

Assume that L ||M||. < /7 and || M||e < a. If © is chosen at
random with E(TQ| = m > dlogd, then with high probability

rd
nﬂf M|% < CaLaBat] -
m

Theorem (Lower bound on any estimator)

There exist M satisfying the assumptions above such that for
any set 2 with |2 =m, we have (under mild technical

assumptions) that

. 1, — rd
I%EhﬂM—M%mew%¢a



Logistic Model

Theorem (Upper bound achieved by convex ML estimator)

]. - = 2 Q ﬁ
M = Mlr < Cae™y | —

Theorem (Lower bound on any estimator)

inf E LHJ\/Z—MH% > caes® rd
% d? m



Probit Model

Two regimes
e High signal-to-noise ratio: o < «
e Low signal-to-noise ratio: o0 > «

Compare to how well we can estimate M from unquantized,
noisy measurements



Probit Model (High SNR)

Theorem (Upper bound achieved by convex ML estimator)

1 — rd
M — M|% < CaPe 2|2
d? m

Theorem (Lower bound on any estimator with unquantized

measurements)
: rd
inf E { HM MHF] > cao
M m



Probit Model (Low SNR)

Theorem (Upper bound achieved by convex ML estimator)

HM M|% < Cao rd

m

Theorem (Lower bound on any estimator with unquantized

measurements)
: rd
inf E { HM MHF] > cao
M m

More noise can lead to improved performance!



Recovery of the Distribution

e It is also possible to establish bounds concerning the
recovery of the distribution f(M), i.e., the matrix where
each entry gives us the probability of observing +1 when we

sample that entry

« We obtain matching upper and lower bounds on the

N

average Hellinger distance between f(M) and f(M)

 When lim Lo <00, we can recover the distribution f(M)
without any assumptions on || M ||
- logistic model
- not probit model

- any model where the noise has heavy tails



Proof Methods

« Upper bounds
- Probability in Banach spaces
- Random matrix theory

e Lower bounds
- Information theoretic arguments
- Fano’s inequality
- Packing sets of low-rank matrices



Tiny Sketch of Proof of Upper Bound

Recall that we maximize the log-likelihood F'(X)
« For a fixed matrix X, E[F(M) — F(X)] =c- D(f(X)||f(M))

« Lemma: Let K = {X : | X||.« <+/r}. With high
probability, supy . |F(X) —EF(X)| <¢

N

By definition, F(M) > F(M)
0> F(M)— F(M)

>E [F(M) _ F(M)} _ 25

N

= c- D(f(M)[|f(M)) — 25

+ Thus, D(f(M)[|f(M)) < 25



Synthetic Simulations

d=500 m =.15d"

log,o, 0



Voting Simulation

Binary (incomplete) data:
Voting history of 105 US senators on 299 bills from 2008-2010

First singular Senator party First singular
vector of M affiliations vector of Yq



Voting Simulation

Randomly delete 90% of the entries

First singular Senator party First singular
vector of M affiliations vector of Yq



Voting Simulation

Randomly delete 95% of the entries

First singular Senator party First singular
vector of M affiliations vector of Yq

86% of missing votes correctly predicted



MovielLens Data Set

100,000 movie ratings (1000 users, 1700 movies) on a scale
from1to5

Convert to binary outcomes by comparing each rating to
the average rating in the data set

Evaluate by checking if we predict the correct sign

Training on 95,000 ratings and testing on remainder
- “standard” matrix completion: 68% accuracy
- 1-bit matrix completion: 74% accuracy



Thank You!



