Lost Without A Compass: Nonmetric Triangulation and Landmark Multidimensional Scaling

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

The triangulation problem

The triangulation problem

Least-squares triangulation

 $x_1, \ldots, x_n \in \mathbb{R}^k$: "Landmark points" (locations known) $x^* \in \mathbb{R}^k$: query point (location unknown) Observe $d_{i} \approx ||x^{*} - x_{i}||_{2}^{2}$ for j = 1, ..., n. How to estimate $x^* \in \mathbb{R}^k$? $d_1 = \|x^* - x_1\|_2^2 = \|x^*\|_2^2 + \|x_1\|_2^2 - 2\langle x^*, x_1 \rangle$ $d_i = ||x^* - x_i||_2^2 = ||x^*||_2^2 + ||x_i||_2^2 - 2\langle x^*, x_i \rangle$

$$\langle x^*, x_j - x_1 \rangle = \frac{\|x_j\|_2^2 - \|x_1\|_2^2 + d_1 - d_j}{2}$$

n-1 linear equations, k unknowns

Nonmetric triangulation

What if we can't measure distances?

- closer to Bermuda than Miami
- closer to Miami than St Martin

Observations: \mathcal{T} such that for all $(i,j)\in\mathcal{T}$

 $||x^* - x_i||_2^2 < ||x^* - x_j||_2^2$

Applications

- Localization
- Nonmetric multidimensional scaling
 - useful tool for data exploration
 - observations are often nonmetric (e.g., pairwise comparisons)
 - adding new data to an existing embedding
 - scalable algorithms via "landmark points"

Ideal point model of preference

Convex optimization approach

Observations: \mathcal{T} such that for all $(i,j)\in\mathcal{T}$

$$||x^* - x_i||_2^2 < ||x^* - x_j||_2^2$$

Recall that if $d_i = ||x^* - x_i||_2^2$, then

$$\langle x^*, x_i - x_j
angle = rac{\|x_i\|_2^2 - \|x_j\|_2^2 + d_j - d_i}{2}$$

Thus, if $||x^* - x_i||_2^2 < ||x^* - x_j||_2^2$, then $\langle x^*, x_i - x_j
angle > rac{\|x_i\|_2^2 - \|x_j\|_2^2}{2}$

Convex optimization approach

Use observations to define $|\mathcal{T}|$ constraints

$$\widehat{x} = \underset{x}{\operatorname{argmin}} \|x\|_{2}^{2}$$

s.t. $\langle x, x_{i} - x_{j} \rangle > \frac{\|x_{i}\|_{2}^{2} - \|x_{j}\|_{2}^{2}}{2}$ $(i, j) \in \mathcal{T}$

Solution can be highly sensitive to noise

Robust version

Introduce "slack variables" to allow some constraints to be violated

$$\widehat{x} = \underset{x,\xi}{\operatorname{argmin}} \|x\|_2^2 + C \sum_{(i,j)\in\mathcal{T}} \xi_{i,j}$$

s.t.
$$\langle x, x_i - x_j
angle \geq rac{\|x_i\|_2^2 - \|x_j\|_2^2}{2} - \xi_{i,j}$$

 $\xi_{i,j} \geq 0 \quad (i,j) \in \mathcal{T}$

Example

n = 25 $|\mathcal{T}| = 50$

Localization error

Nonmetric MDS

What if no initial configuration of points is known?

Several algorithms exist for nonmetric MDS, but they are all computationally expensive

Landmark nonmetric MDS

- Pick random subset of the data
- Learn an embedding of these "landmark points" via (expensive) nonmetric MDS algorithms
- Use nonmetric triangulation to embed rest of dataset

Landmark nonmetric MDS

Summary

- Simple convex algorithm for nonmetric triangulation that easily handles
 - noisy observations
 - highly incomplete comparisons
- Natural extension to nonmetric MDS via the method of "landmark points"
- Open questions
 - theoretical analysis
 - active selection of comparisons

Thank You!