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Least-squares triangulation 

                           : “Landmark points” (locations known) 
 

              : query point (location unknown) 
 

Observe                               for 

 

How to estimate               ? 

 

x1; : : : ; xn 2 Rk

x¤ 2 Rk

dj ¼ kx¤¡ xjk22 j = 1; : : : ; n:

x¤ 2 Rk

d1 = kx¤¡ x1k22 = kx¤k22+ kx1k22¡ 2hx¤; x1i

dj = kx¤¡ xjk22 = kx¤k22+ kxjk22¡ 2hx¤; xji

hx¤; xj ¡ x1i= kxjk22¡kx1k22+d1¡dj
2

n¡ 1 klinear equations,    unknowns 



What if we can’t measure distances? 

– closer to Bermuda than Miami 

– closer to Miami than St Martin 

– … 

 

 

 

 

 

 

Observations:       such that for all 

Nonmetric triangulation 

T (i; j) 2 T

kx¤¡ xik22 < kx¤¡ xjk22



Applications 

• Localization 

 

• Nonmetric multidimensional scaling 
 

– useful tool for data exploration 
 

– observations are often nonmetric (e.g., pairwise comparisons) 
 

– adding new data to an existing embedding 
 

– scalable algorithms via “landmark points” 

 



Ideal point model of preference 

Items 

Jarvis 

Rk

Godfather I 

Godfather II 

Goodfellas 

Weekend  

At Bernies 



Convex optimization approach 

Observations:       such that for all 

 

 

 

Recall that if                            , then 

 

 
 

 

Thus, if                                          , then 

T (i; j) 2 T

kx¤¡ xik22 < kx¤¡ xjk22

hx¤; xi ¡ xji= kxik22¡kxjk22+dj¡di
2

di = kx¤¡ xik22

kx¤¡ xik22 < kx¤¡ xjk22

hx¤; xi ¡ xji > kxik22¡kxjk22
2



Convex optimization approach 

Use observations to define       constraints 

 

 

 

 

 

 

 

 

Solution can be highly sensitive to noise 

 

 

jT j

bx= argmin
x

kxk22

s.t. hx; xi ¡ xji >
kxik22 ¡ kxjk22

2
(i; j) 2 T



Robust version 

Introduce “slack variables” to allow some constraints to be 

violated 

bx= argmin
x;»

kxk22+C
X

(i;j)2T

»i;j

s.t. hx; xi ¡ xji ¸
kxik22 ¡ kxjk22

2
¡ »i;j

»i;j ¸ 0 (i; j) 2 T



Example 

jT j= 50

n=25



Localization error 



Nonmetric MDS 

What if no initial configuration of points is known? 

 

Several algorithms exist for nonmetric MDS, but they are all 

computationally expensive  

 

Landmark nonmetric MDS 

• Pick random subset of the data 

• Learn an embedding of these “landmark points” via 

(expensive) nonmetric MDS algorithms 

• Use nonmetric triangulation to embed rest of dataset 



Landmark nonmetric MDS 

jT j= 200

nL = 50

nT = 50



Summary 

• Simple convex algorithm for nonmetric triangulation that 

easily handles 

– noisy observations 

– highly incomplete comparisons 

 

• Natural extension to nonmetric MDS via the method of 

“landmark points” 

 

• Open questions 

– theoretical analysis 

– active selection of comparisons 

 



Thank You! 


