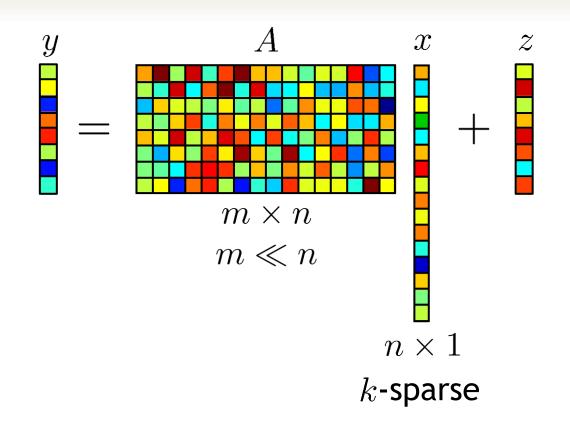
Adaptive sensing for compressive imaging

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

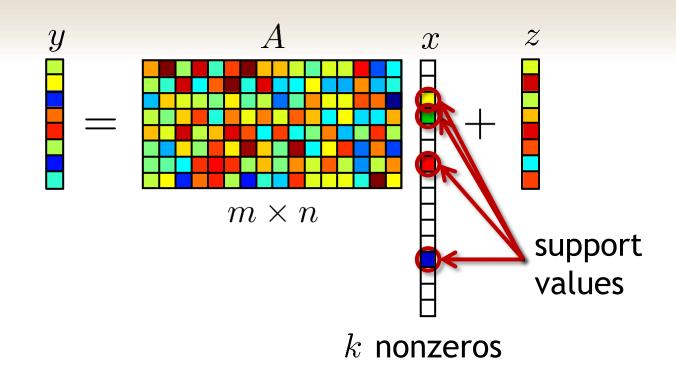
Compressive sensing



When (and how well) can we estimate x from the measurements y?

Review of Nonadaptive Compressive Sensing

Compressive sensing



- How should we design A to ensure that y contains as much information about x as possible?
- What algorithms do we have for recovering x from y?

How to design *A*?

Prototypical sensing model:

$$y = Ax + z$$
 $z \sim \mathcal{N}(0, \sigma^2 I)$

- Constrain \boldsymbol{A} to have unit-norm rows
- Pick *A* at *random!*
 - i.i.d. Gaussian entries (with variance 1/n)
 - random rows from a unitary matrix
- As long as $m = O(k \log(n/k))$, with high probability a random A will satisfy the *restricted isometry property*
- Deep connections with *Johnson-Lindenstrauss Lemma*

How to recover x ?

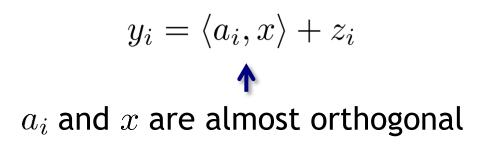
- Lots and lots of algorithms
 - ℓ_1 -minimization
 - greedy algorithms (matching pursuit, CoSaMP, IHT)

If A satisfies the RIP,
$$||x||_0 \leq k$$
, and
 $y = Ax + z$ with $z \sim \mathcal{N}(0, \sigma^2 I)$, then
 $\widehat{x} = \underset{x' \in \mathbb{R}^n}{\arg \min} ||x'||_1$
s.t. $||A^*(y - Ax')||_{\infty} \leq c\sqrt{\log n\sigma}$
satisfies
 $\mathbb{E} ||\widehat{x} - x||_2^2 \leq C \frac{n}{m} k\sigma^2 \log n.$
[Candès and Tao (2005)]

Room for improvement?

There exists matrices A such that for *any* (sparse) x we have

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \le C \frac{n}{m} k \sigma^2 \log n.$$



- We are using most of our "sensing power" to sense entries that aren't even there!
- Tremendous loss in signal-to-noise ratio (SNR)
- It's hard to imagine any way to avoid this...

Can we do better?

Theorem

For any matrix A (with unit-norm rows) and any recovery procedure \hat{x} , there exists an x with $||x||_0 \le k$ such that if y = Ax + z with $z \sim \mathcal{N}(0, \sigma^2 I)$, then

$$\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C' \frac{n}{m} k\sigma^2 \log(n/k).$$

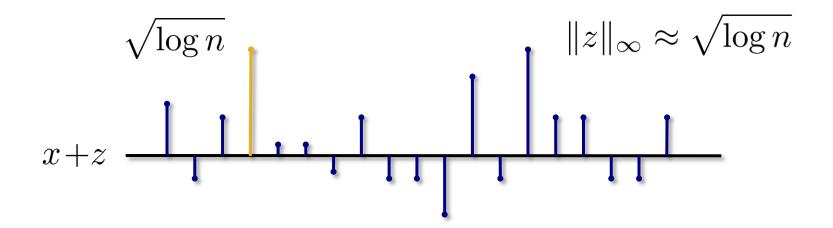
Compressive sensing is already operating at the limit

[Candès and Davenport (2013)]

Intuition

Suppose that y = x + z with $z \sim \mathcal{N}(0, I)$ and that k = 1

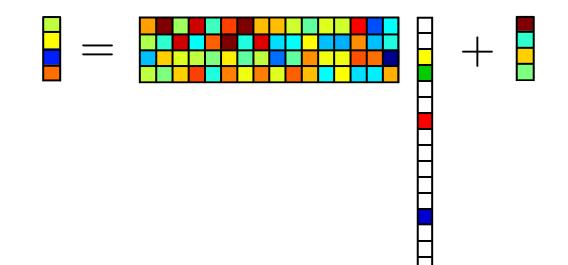
 $\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C' \log n$



Adaptive Sensing

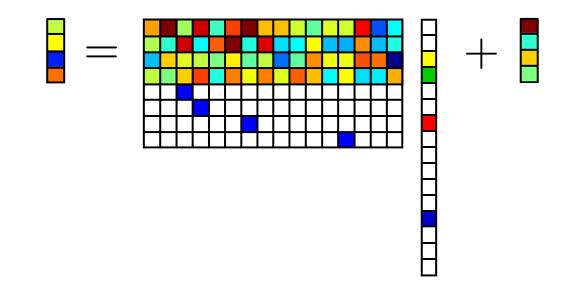
Adaptive sensing

Think of sensing as a game of 20 questions



Adaptive sensing

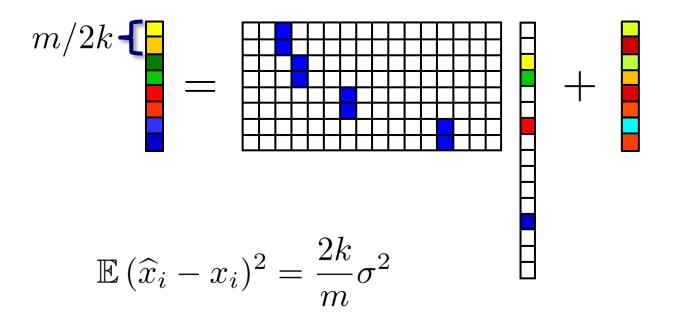
Think of sensing as a game of 20 questions



Simple strategy: Use m/2 measurements to find the support, and the remainder to estimate the values.

Thought experiment

Suppose that after m/2 measurements we have perfectly estimated the support.



$$\mathbb{E} \|\widehat{x} - x\|_2^2 = \frac{2k}{m} k\sigma^2 \ll \frac{n}{m} k\sigma^2 \log n$$

Does adaptivity *really* help?

Sometimes...

- Noise-free measurements, but non-sparse signal
 - adaptivity doesn't help if you want a uniform guarantee
 - probabilistic adaptive algorithms can reduce the required number of measurements from $O(k\log(n/k))$ to $O(k\log\log(n/k))$ [Indyk et al. 2011]
- Noisy setting
 - distilled sensing [Haupt et al. 2007, 2010]
 - adaptivity can reduce the estimation error to

Which is it?

Suppose we have a budget of m measurements of the form $y_i = \langle a_i, x \rangle + z_i$ where $||a_i||_2 = 1$ and $z_i \sim \mathcal{N}(0, \sigma^2)$

The vector a_i can have an arbitrary dependence on the measurement history, i.e., $(a_1, y_1), \ldots, (a_{i-1}, y_{i-1})$

Theorem

There exist x with $||x||_0 \le k$ such that for *any* adaptive measurement strategy and *any* recovery procedure \hat{x} ,

$$\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C \frac{n}{m} k \sigma^2.$$

Thus, in general, adaptivity does *not* significantly help!

[Arias-Castro, Candès, and Davenport (2013)]

Proof strategy

- Step 1: Consider a prior on sparse signals with nonzeros of amplitude $\mu \approx \sigma \sqrt{n/m}$
- Step 2: Show that if given a budget of *m* measurements, you cannot detect the support very well
- Step 3: Immediately translate this into a lower bound on the MSE

To make things simpler, we will consider a Bernoulli prior $\pi(x)$ instead of a uniform k-sparse prior:

$$x_j = \begin{cases} 0 & \text{with probability } 1 - k/n \\ \mu > 0 & \text{with probability } k/n \end{cases}$$

Proof of main result

Let $S = \{j : x_j \neq 0\}$ and set $\sigma^2 = 1$ For any estimator \hat{x} , define $\hat{S} := \{j : |\hat{x}_j| \ge \mu/2\}$ Whenever $j \in S \setminus \hat{S}$ or $j \in \hat{S} \setminus S$, $|\hat{x}_j - x_j| \ge \mu/2$

$$\|\widehat{x} - x\|_{2}^{2} \ge \frac{\mu^{2}}{4} |S \setminus \widehat{S}| + \frac{\mu^{2}}{4} |\widehat{S} \setminus S| = \frac{\mu^{2}}{4} |\widehat{S} \Delta S|$$

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} |\widehat{S} \Delta S|$$

Proof of main result

Lemma Under the Bernoulli prior, *any* estimate \hat{S} satisfies

$$\mathbb{E}\left|\widehat{S}\Delta S\right| \ge k\left(1 - \frac{\mu}{2}\sqrt{\frac{m}{n}}\right)$$

Thus,
$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} |\widehat{S}\Delta S|$$

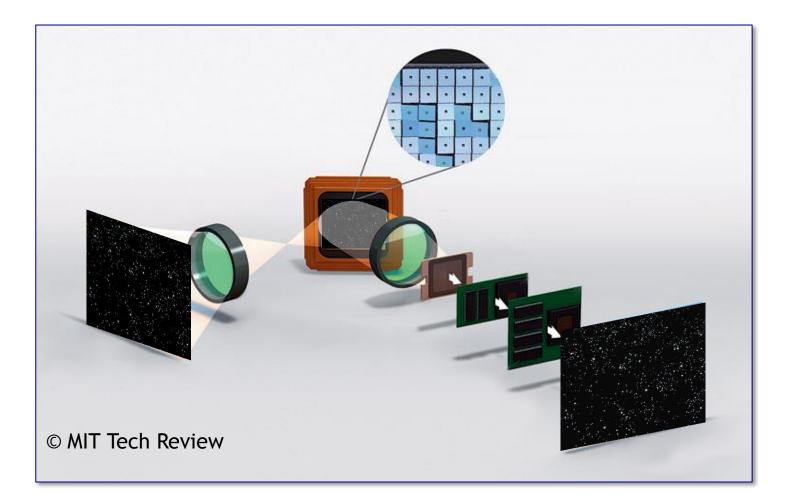
$$\ge k \cdot \frac{\mu^2}{4} \left(1 - \frac{\mu}{2}\sqrt{\frac{m}{n}}\right)$$

Plug in $\mu = \frac{8}{3}\sqrt{\frac{n}{m}}$ and this reduces to

$$\mathbb{E} \|\widehat{x} - x\|_{2}^{2} \ge \frac{4}{27} \cdot \frac{kn}{m} \ge \frac{1}{7} \cdot \frac{kn}{m}$$

Adaptivity in Practice

Adaptive imaging



[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk (2008)]

Incredibly simplified model

Suppose that k = 1 and that $x_{j^*} = \mu$

```
Our goal is to find j^* and estimate \mu
```

We will assume a fixed budget of time available for sensing

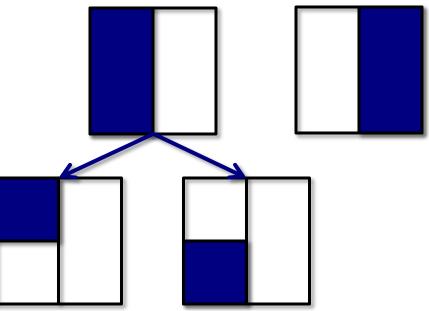
- rather than forcing ourselves to use m equally weighted rows we simply require that the total energy in the (adaptively chosen) sensing matrix is fixed

We will split our "energy budget" into two phases

- 1. Identify j^* via *compressive binary search*
- 2. Estimate the value of μ by directly sampling it with the remaining sensing energy

Compressive binary search

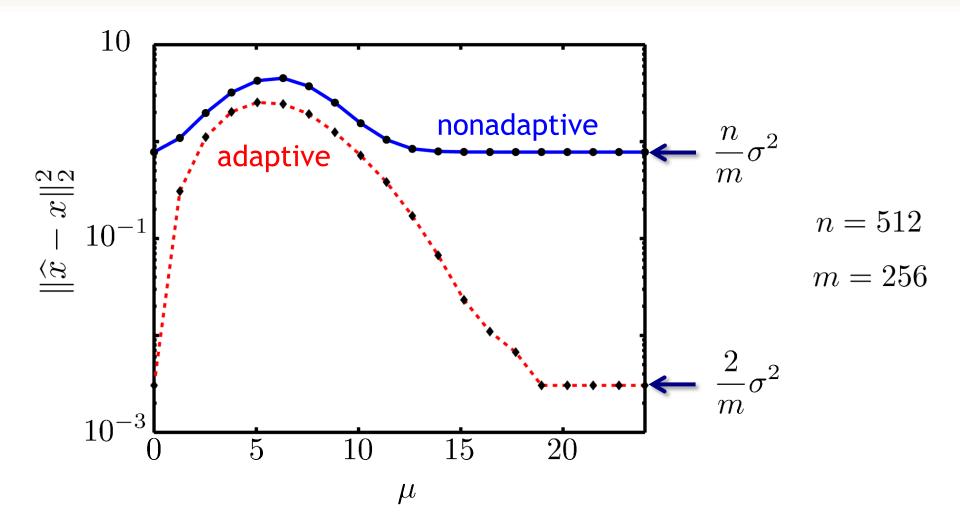
- Split measurements into $\log_2 n$ stages
- In each stage, use some of the "sensing energy" to determine if the nonzero is on the "left" or "right" of the active set



• After subdividing $\log_2 n$ times, return estimated location

[Iwen and Tewfik (2011), Davenport and Arias-Castro (2012), Malloy and Nowak (2012)]

Experimental results



[Arias-Castro, Candès, and Davenport (2013)]

Conclusions

- Our lower bound shows that no method can find the location of the nonzero when $\frac{\mu}{\sigma} \approx \sqrt{\frac{n}{m}}$
- With careful allocation of the energy budget across the stages, compressive binary search will succeed with high probability provided $\frac{\mu}{\sigma} > 4\sqrt{\frac{n}{m}}$
- By randomly splitting the image into smaller sets and iteratively applying the compressive binary search idea, we can extend this approach to k-sparse signals
- Open questions
 - noise models for low-light imaging
 - alternative sparsity models
 - alternative measurement models

Thank You!