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Sparse Estimation 

How well can we estimate    ? 

-sparse 



Background: Dantzig Selector 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution with 

– select      rows from a random unitary matrix. 

 

• If                                      , then using     -minimization 

(e.g., Dantzig selector, LASSO) we can achieve 

 

 

Is this the best we can do? 



Can We Do Better? 

Via a better choice of    ?  Better recovery algorithm? 
 

Assume that we have a “sensing power budget” that requires 

            for                      and that the rows      are selected  

in advance, i.e., nonadaptively. 

 

 

 

 

 

 
 

 

See Raskutti, Wainwright, and Yu (2009), Ye and Zhang (2010), 

Candès and Davenport (2011)  

Theorem  

For any matrix    and recovery procedure    , 

if                    with                      , then 



Intuition  

Suppose that                  with                    and that  



Compressive Sensing and SNR 

• We are using most of our “sensing power” to sense entries 

that aren’t even there! 

• Tremendous SNR loss 

• Can potentially do much better if we can somehow 

concentrate our “sensing power” on the nonzeros 

sparse dense 



Think of sensing as a game of 20 questions 

 

 

 

 

 

 

 

Simple strategy: Use         measurements to find the support, 

and the remainder to estimate the values.  

If support estimate is correct: 

 

Adaptivity to the Rescue? 



Does Adaptivity Really Help? 

Sometimes… 

• Information-based complexity: “Adaptivity doesn’t help!” 

– assumes signal     lies in a set      satisfying certain conditions 

– noise-free measurements 

– adaptivity reduces minimax error over      by at most        
 

• Nevertheless, adaptivity can still help  [Indyk et al. - 2011] 

– reduced number of measurements in a probabilistic setting 

– still requires noise-free measurements 
 

• What about noise?   

– distilled sensing (Haupt, Castro, Nowak, and others) 

– message seems to be that adaptivity really helps in noise 



Main Result 

Suppose we have a budget of      measurements of the form 

                       where                and                     .   
 

The vector     can have an arbitrary dependence on the 

measurement history, i.e.,   

  

[Arias-Castro, Candès, and Davenport - 2011] 

Theorem   

For any adaptive measurement strategy and any  

recovery procedure    , 

 

 

Thus, in general, adaptivity does not significantly help! 



A Detour Down Fano’s Highway 

We know that feedback does not (substantially) increase the 

capacity of a Gaussian channel. This is very similar in flavor 

to our result, so can we use the same technique?  

 

We could construct a packing set and via Fano’s inequality, 

obtain a lower bound on 

 

 

 where 

 

The distribution of     given          is potentially very nasty…  

it is not clear how we could bound  



Alternative Strategy 

Step 1:  Consider sparse signals with nonzeros of amplitude 

                    
 

Step 2:  Show that if you given a budget of     measurements, 

    you cannot detect the support very well.    
 

Step 3:  Immediately translate this into a lower bound on the  

         MSE. 
 

To make things simpler, we will consider a Bernoulli prior            

         instead of a uniform   -sparse prior: 



Proof of Main Result 

Let                          , and     be an estimate of    obtained via 

any adaptive measurement strategy. Set   

 

 

 

 

 
 

For any estimator   , define 

Lemma 

Under the Bernoulli prior, if              , then   



Proof of Main Result 

Thus, 

 

 

 

Plug in                  and this reduces to 

 

 

 

 

 

The hard part is proving the required lemma. 



Proof of Lemma 

Define             if          and 0 otherwise.  Let                 and 

 

 

 

 

 

For each term in the sum, we can lower bound by the Bayes 

risk of the optimal detector (the LRT).   
 

Towards this end, let                             and define: 

 



Likelihood Ratio Test 

The likelihood ratio test (LRT) will set             when  

                                       and has risk bounded by 

 

 

Thus, 

 

 

 

 
 

Our result follows from 



Pinsker’s Inequality 
 

 

 

Applying Pinsker twice we obtain 

 

 

Consider the case of           and set                and 

If                           , then we can write 

 

 

 

 
 

and similarly for    



Bounding the KL Divergence 

From the convexity of the KL divergence, we obtain 

 

 

 

To calculate this divergence, observe that if                            

then                     under         and  

under 

 

Moreover, 

 

 

and similarly for   



Bounding the KL Divergence 

Combining all of this we obtain 

 

 

 

 

 

 

 

 

 
 

Thus, 



Bounding the KL Divergence 

Similarly, 

 

Recall that we originally wanted to bound 

 

 

Plugging in our bound (which holds for any   ) we obtain  

 

 

 

Summing over   , we finally arrive at 



Adaptivity in Practice 

Suppose that            and that  

 

Algorithm 1 [Castro et al. – 2008] 

– start with random (Rademacher) matrix  

– after each measurement, compute posterior distribution 

– re-weight subsequent measurements using    , i.e., set  

 

 

The posterior will gradually concentrate on the correct 

support, eventually leading to measurement vectors that 

use all their energy to directly measure the nonzero. 

 

 

 



Adaptivity in Practice 

Suppose that            and that  

 

Algorithm 2 [Iwen and Tewfik – 2011] 

– split measurements into           stages  

– in each stage, use measurements to decide if the nonzero is 

in the left or right half of the “active set” 

– after subdividing           times, return support 
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Adaptivity in Practice 

Suppose that            and that  

 

Algorithm 2 [Iwen and Tewfik – 2011] 

– split measurements into           stages  

– in each stage, use measurements to decide if the nonzero is 

in the left or right half of the “active set” 

– after subdividing           times, return support 



Phase Transition in the Posterior 

[Arias-Castro, Candès, and Davenport - 2011] 

Algorithm 1 Algorithm 2 



Phase Transition in the MSE 

[Arias-Castro, Candès, and Davenport - 2011] 



Conclusions 

• Surprisingly, adaptive algorithms, no matter how 

intractable, cannot significantly improve over seemingly 

naively simple nonadaptive strategies 

 

• Adaptivity might still be very useful in practice  

– for a given value of   , how many additional measurements 

are required to transition from the regime where adaptivity 

doesn’t help to where it does?  

– practical adaptive algorithms that achieve the minimax rate 

for all values of     ? 

– practical architectures for implementing adaptive 

measurements in real-world signals? 


