The limits of adaptive sensing

Mark A. Davenport
Stanford University
Department of Statistics
Sparse Estimation

\[y = A x + z \]

- Sparse

\[m \times n \]
\[m \ll n \]

\(k \)-sparse

How well can we estimate \(x \)?
Choose a *random matrix*
- fill out the entries of A with i.i.d. samples from a sub-Gaussian distribution with $\mathbb{E}(a_{ij}^2) = \frac{1}{n}$.
- select m rows from a random unitary matrix.

If $m = O(k \log(n/k)) \ll n$, then using ℓ_1-minimization (e.g., Dantzig selector, LASSO) we can achieve

$$\mathbb{E} \left\| \hat{x} - x \right\|_2^2 \leq C \frac{n}{m} k \sigma^2 \log n$$

Is this the best we can do?
Can We Do Better?

Via a better choice of A? Better recovery algorithm?

Assume that we have a “sensing power budget” that requires $\|a_i\|_2 = 1$ for $i = 1, \ldots, m$, and that the rows a_i are selected in advance, i.e., nonadaptively.

Theorem
For any matrix A and recovery procedure \hat{x}, if $y = Ax + z$ with $z \sim \mathcal{N}(0, \sigma^2 I)$, then

$$
\sup_{\|x\|_0 \leq k} \mathbb{E} \|\hat{x}(y) - x\|_2^2 \geq C' \frac{n}{m} k \sigma^2 \log(n/k).
$$

See Raskutti, Wainwright, and Yu (2009), Ye and Zhang (2010), Candès and Davenport (2011)
Intuition

Suppose that \(y = x + z \) with \(z \sim \mathcal{N}(0, I) \) and that \(k = 1 \).

\[
\sup_{\|x\|_0 \leq 1} \mathbb{E} \|\hat{x}(y) - x\|_2^2 \geq C' \log n.
\]

\[
\mu = \sqrt{\log n}
\]

\[
\|z\|_\infty = O\left(\sqrt{\log n}\right)
\]
Compressive Sensing and SNR

\[\sup_{\|x\|_0 \leq k} \mathbb{E} \| \hat{x}(y) - x \|_2^2 \geq C \frac{n}{m} k \sigma^2 \log(n/k). \]

\[\langle a, x \rangle = \sum_{j=1}^{n} a_j x_j + z \]

dense \quad \leftrightarrow \quad sparse

- We are using most of our “sensing power” to sense entries that aren’t even there!
- Tremendous SNR loss
- Can potentially do much better if we can somehow concentrate our “sensing power” on the nonzeros
Adaptivity to the Rescue?

Think of sensing as a game of 20 questions

\[
\begin{align*}
\text{Simple strategy: Use } m/2 \text{ measurements to find the support,} \\
\text{and the remainder to estimate the values.}
\end{align*}
\]

If support estimate is correct:

\[
\mathbb{E} \left\| \hat{x} - x \right\|_2^2 = \frac{2k}{m} k\sigma^2 \ll \frac{n}{m} k\sigma^2 \log n
\]
Does Adaptivity Really Help?

Sometimes...

- Information-based complexity: “Adaptivity doesn’t help!”
 - assumes signal x lies in a set S satisfying certain conditions
 - noise-free measurements
 - adaptivity reduces minimax error over S by at most 2

- Nevertheless, adaptivity can still help [Indyk et al. - 2011]
 - reduced number of measurements in a probabilistic setting
 - still requires noise-free measurements

- What about noise?
 - distilled sensing (Haupt, Castro, Nowak, and others)
 - message seems to be that adaptivity really helps in noise
Main Result

Suppose we have a budget of m measurements of the form $y_i = \langle a_i, x \rangle + z_i$ where $\|a_i\|_2 = 1$ and $z_i \sim \mathcal{N}(0, \sigma^2)$.

The vector a_i can have an arbitrary dependence on the measurement history, i.e., $(a_1, y_1), \ldots, (a_{i-1}, y_{i-1})$.

Theorem

For *any* adaptive measurement strategy and *any* recovery procedure \hat{x},

$$\sup_{\|x\|_0 \leq k} \mathbb{E} \left\| \hat{x}(y) - x \right\|_2^2 \geq C \frac{n}{m} k \sigma^2.$$

Thus, in general, adaptivity does *not* significantly help!

[Arias-Castro, Candès, and Davenport - 2011]
A Detour Down Fano’s Highway

We know that feedback does not (substantially) increase the capacity of a Gaussian channel. This is very similar in flavor to our result, so can we use the same technique?

We could construct a packing set and via Fano’s inequality, obtain a lower bound on

\[
I(x, y) = h(y) - h(y|x) = \sum_{i=1}^{m} h(y_i | y_{i-1}) - h(y_i | x, y_{i-1})
\]

where \(y[i] = y_1, \ldots, y_i \).

The distribution of \(y_i \) given \(y[i-1] \) is potentially very nasty... it is not clear how we could bound \(h(y_i | y_{i-1}) \).
Alternative Strategy

Step 1: Consider sparse signals with nonzeros of amplitude
\[\mu \approx \sigma \sqrt{\frac{n}{m}}. \]

Step 2: Show that if you given a budget of \(m \) measurements, you cannot detect the support very well.

Step 3: Immediately translate this into a lower bound on the MSE.

To make things simpler, we will consider a Bernoulli prior \(\pi(x) \) instead of a uniform \(k \)-sparse prior:

\[x_j = \begin{cases}
0 & \text{with probability } 1 - k/n \\
\mu > 0 & \text{with probability } k/n
\end{cases} \]
Proof of Main Result

Let \(S = \{ j : x_j \neq 0 \} \), and \(\hat{S} \) be an estimate of \(S \) obtained via \textit{any} adaptive measurement strategy. Set \(\sigma^2 = 1 \).

Lemma

Under the Bernoulli prior, if \(k \leq n/2 \), then

\[
E |\hat{S} \Delta S| \geq k \left(1 - \frac{\mu}{2} \sqrt{\frac{m}{n}} \right).
\]

For any estimator \(\hat{x} \), define \(\hat{S} := \{ j : |\hat{x}_j| \geq \mu/2 \} \).

\[
\| \hat{x} - x \|_2^2 = \sum_{j \in S} (\hat{x}_j - x_j)^2 + \sum_{j \notin S} \hat{x}_j^2 \\
\geq \frac{\mu^2}{4} |S \setminus \hat{S}| + \frac{\mu^2}{4} |\hat{S} \setminus S| = \frac{\mu^2}{4} |\hat{S} \Delta S|.
\]
Proof of Main Result

Thus, \(\mathbb{E} \| \hat{x} - x \|_2^2 \geq \frac{\mu^2}{4} \mathbb{E} |\hat{S}\Delta S| \)

\[\geq k \cdot \frac{\mu^2}{4} \left(1 - \frac{\mu}{2} \sqrt{\frac{m}{n}} \right). \]

Plug in \(\mu = \frac{8}{3} \sqrt{\frac{n}{m}} \) and this reduces to

\[\mathbb{E} \| \hat{x} - x \|_2^2 \geq \frac{4}{27} \cdot \frac{kn}{m} \geq \frac{1}{7} \cdot \frac{kn}{m}. \]

The hard part is proving the required lemma.
Proof of Lemma

Define $S_j = 1$ if $j \in S$ and 0 otherwise. Let $\pi_1 = k/n$ and $\pi_0 = 1 - \pi_1$.

$$\mathbb{E} |\hat{S} \Delta S| = \sum_j \mathbb{P}(\hat{S}_j \neq S_j)$$

$$= \sum_j \pi_0 \mathbb{P}(\hat{S}_j = 1|S_j = 0) + \pi_1 \mathbb{P}(\hat{S}_j = 0|S_j = 1).$$

For each term in the sum, we can lower bound by the Bayes risk of the optimal detector (the LRT).

Towards this end, let $y_{[m]} = y_1, \ldots, y_m$ and define:

$$\mathbb{P}_{0,j}(y_{[m]}) = \mathbb{P}(y_{[m]}|x_j = 0)$$

$$\mathbb{P}_{1,j}(y_{[m]}) = \mathbb{P}(y_{[m]}|x_j = \mu)$$
Likelihood Ratio Test

The likelihood ratio test (LRT) will set \(\hat{S}_j = 1 \) when \(\pi_1 \mathbb{P}_{1,j}(y_{[m]}) > \pi_0 \mathbb{P}_{0,j}(y_{[m]}) \) and has risk bounded by

\[
B_j \geq \min(\pi_0, \pi_1) \left(1 - \| \mathbb{P}_{1,j} - \mathbb{P}_{0,j} \|_{TV} \right).
\]

Thus,

\[
\mathbb{E} |\hat{S} \Delta S'| \geq \pi_1 \sum_j \left(1 - \| \mathbb{P}_{1,j} - \mathbb{P}_{0,j} \|_{TV} \right)
\]

\[
\geq k - \frac{k}{\sqrt{n}} \sqrt{\sum_j \| \mathbb{P}_{1,j} - \mathbb{P}_{0,j} \|_{TV}^2}.
\]

Our result follows from

\[
\sum_j \| \mathbb{P}_{1,j} - \mathbb{P}_{0,j} \|_{TV}^2 \leq \frac{\mu^2}{4} m.
\]
Pinsker’s Inequality

\[\|P - Q\|_{TV} \leq \frac{\sqrt{K(P, Q)}}{2} \]

Applying Pinsker twice we obtain

\[\|P_{1,j} - P_{0,j}\|_{TV}^2 \leq \frac{\pi_0}{2} K(P_{0,j}, P_{1,j}) + \frac{\pi_1}{2} K(P_{1,j}, P_{0,j}) \]

Consider the case of \(j = 1 \) and set \(P_0 = P_{0,1} \) and \(P_1 = P_{1,1} \).

If \(x' = (x_2, \ldots, x_n) \), then we can write

\[P_0(y[m]) = \sum_{x'} P(x') P(y[m] | x_1 = 0, x') \]

\[:= \sum_{x'} P(x') P_{0,x'}(y[m]) \]

and similarly for \(P_1 \).
Bounding the KL Divergence

From the convexity of the KL divergence, we obtain

$$K(\mathbb{P}_0, \mathbb{P}_1) \leq \sum_{x'} \mathbb{P}(x') K(\mathbb{P}_{0,x'}, \mathbb{P}_{1,x'})$$

To calculate this divergence, observe that if $c_i = \sum_{j \geq 2} a_{i,j} x_j$ then $y_i = c_i + z_i$ under $\mathbb{P}_{0,x'}$ and $y_i = a_{i,1} \mu + c_i + z_i$ under $\mathbb{P}_{1,x'}$.

Moreover,

$$\mathbb{P}_{0,x'}(y[m]) = \prod_{i=1}^{m} \mathbb{P}(y_i | a_i, x_1 = 0, x')$$

and similarly for $\mathbb{P}_{1,x'}$.
Bounding the KL Divergence

Combining all of this we obtain

\[
K(\mathbb{P}_0, x', \mathbb{P}_1, x') = \mathbb{E}_{0, x'} \log \frac{\mathbb{P}_0, x'}{\mathbb{P}_1, x'}
\]

\[
= \sum_{i=1}^{m} \mathbb{E}_{0, x'} \left(\frac{1}{2} (y_1 - \mu a_{i,1} - c_i)^2 - \frac{1}{2} (y_i - c_i)^2 \right)
\]

\[
= \sum_{i=1}^{m} \mathbb{E}_{0, x'} (-z_i \mu a_{i,1} + (\mu a_{i,1})^2 / 2)
\]

\[
= \frac{\mu^2}{2} \sum_{i=1}^{m} \mathbb{E}_{0, x'} (a_{i,1}^2)
\]

Thus, \(K(\mathbb{P}_0, \mathbb{P}_1) \leq \frac{\mu^2}{2} \sum_{i=1}^{m} \mathbb{E} (a_{i,1}^2 | x_1 = 0) \).
Bounding the KL Divergence

Similarly, \(K(\mathbb{P}_1, \mathbb{P}_0) \leq \frac{\mu^2}{2} \sum_{i=1}^{m} \mathbb{E}\left(a_{i,1}^2 | x_1 = \mu\right). \)

Recall that we originally wanted to bound

\[
\|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{TV}^2 \leq \frac{\pi_0}{2} K(\mathbb{P}_{0,j}, \mathbb{P}_{1,j}) + \frac{\pi_1}{2} K(\mathbb{P}_{1,j}, \mathbb{P}_{0,j}).
\]

Plugging in our bound (which holds for any \(j \)) we obtain

\[
\|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{TV}^2 \leq \frac{\mu^2}{4} \sum_{i=1}^{m} \mathbb{E} a_{i,j}^2.
\]

Summing over \(j \), we finally arrive at

\[
\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{TV}^2 \leq \frac{\mu^2}{4} \sum_{i,j} \mathbb{E} a_{i,j}^2 = \frac{\mu^2}{4} m.
\]
Adaptivity in Practice

Suppose that $k = 1$ and that $x_{j^*} = \mu$.

Algorithm 1 [Castro et al. - 2008]

- start with random (Rademacher) matrix B
- after each measurement, compute posterior distribution p
- re-weight subsequent measurements using p, i.e., set $a_i = b_i \circ \sqrt{p}$.

The posterior will gradually concentrate on the correct support, eventually leading to measurement vectors that use all their energy to directly measure the nonzero.
Adaptivity in Practice

Suppose that $k = 1$ and that $x_{j^*} = \mu$.

Algorithm 2 [Iwen and Tewfik - 2011]
- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the “active set”
- after subdividing $\log n$ times, return support
Suppose that $k = 1$ and that $x_{j^*} = \mu$.

Algorithm 2 [Iwen and Tewfik - 2011]
- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the “active set”
- after subdividing $\log n$ times, return support
Suppose that $k = 1$ and that $x_{j^*} = \mu$.

Algorithm 2 [Iwen and Tewfik - 2011]
- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the “active set”
- after subdividing $\log n$ times, return support
Adaptivity in Practice

Suppose that $k = 1$ and that $x_{j^*} = \mu$.

Algorithm 2 [Iwen and Tewfik - 2011]

- split measurements into $\log n$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the “active set”
- after subdividing $\log n$ times, return support
Phase Transition in the Posterior

\[\lambda = \frac{p_{j^*}}{\max_{j \neq j^*} p_j} \]

Algorithm 1

Algorithm 2

\[n = 512 \quad \sigma^2 = 1 \]

[Arias-Castro, Candès, and Davenport - 2011]
Phase Transition in the MSE

\[n = 512 \]
\[\sigma^2 = 1 \]
\[m_d = 128 \]
\[m_e = 128 \]
Conclusions

• Surprisingly, adaptive algorithms, no matter how intractable, cannot significantly improve over seemingly naively simple nonadaptive strategies.

• Adaptivity might still be very useful in practice:
 - for a given value of μ, how many additional measurements are required to transition from the regime where adaptivity doesn’t help to where it does?
 - practical adaptive algorithms that achieve the minimax rate for all values of μ?
 - practical architectures for implementing adaptive measurements in real-world signals?