Sparse Geodesic Paths

Mark Davenport and Richard Baraniuk

Data Deluge

- Size: 281 billion gigabytes generated in 2007 digital bits > stars in the universe growing by a factor of 10 every 5 years
 Avogadro's number (6.02x10²³) in 15 years
- In 2007 digital data generated > total storage
 by 2011, ½ of digital universe will have no home
- Growth fueled by sensor data
 audio, acoustics, images, video, sensor nets, ...

[Source: IDC Whitepaper "The Diverse and Exploding Digital Universe" March 2008]

Data Deluge

How can we extract as much information as possible from a limited amount of data?

How can we extract any information at all from a massive amount of high-dimensional data?

Low-Dimensional Models

 We must overcome the "curse of dimensionality"

$$x \in \mathbb{R}^N$$

 Most data is highly structured – not a space-filling point cloud

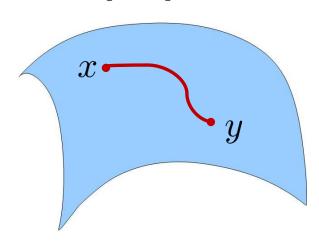
- Data lies on or near a low-dimensional set
 - parametric/generative models
 - topological manifold of dimension K

$$K \ll N$$

Manifolds

 How is manifold structure exploited in practice?

$$\phi:[0,1]\to\mathcal{X}$$



 Replace Euclidean distance with geodesic distance

$$\Phi_{\mathcal{X}}(x,y) = \{ \phi(t) : \phi(0) = x, \phi(1) = y, \phi(t) \in \mathcal{X} \}$$

Geodesic path

$$\gamma = \underset{\phi \in \Phi_{\mathcal{X}}(x,y)}{\operatorname{arg inf}} L(\phi)$$

Geodesic distance

$$d_{\mathcal{X}}(x,y) = L(\gamma)$$

Sparse Signals

Basis transformation

DCT, wavelets

Sparse: $K \ll N$ nonzero coefficients

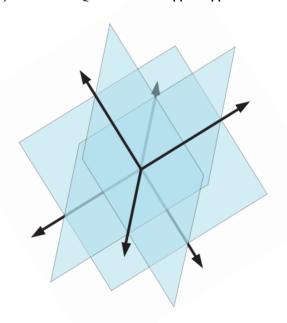
Compressible: $K \ll N$ *important* coefficients

Unions of Subspaces

- Sparse signal ≠ subspaces
 - subspace model: linear
 - sparse model: nonlinear
 - sparse model = union of $\binom{N}{K}$ subspaces

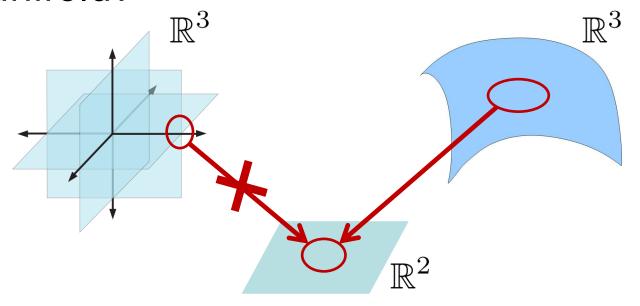
$$\Sigma_K := \{ x : ||x||_0 \le K \}$$

$$\Sigma_K := \{x : ||x||_0 \le K\} \qquad \Psi(\Sigma_K) := \{\Psi x : ||x||_0 \le K\}$$



Sparsity vs Manifolds

 Does the set of sparse signals form a manifold?

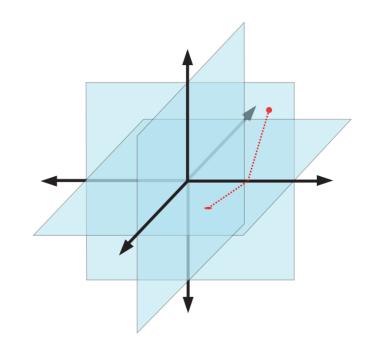


- Union of multiple manifolds
- Same lessons apply we can still exploit the low-dimensional structure

Sparse Geodesic Paths

$$\gamma = \underset{\phi \in \Phi_{\Sigma_K}(x,y)}{\operatorname{arg\,inf}} L(\phi)$$

$$d_{\Sigma_K}(x,y) = L(\gamma)$$



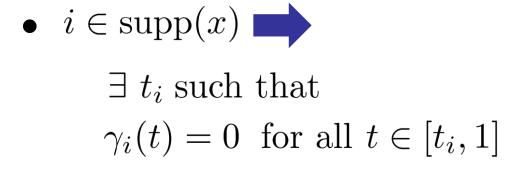
Assumptions

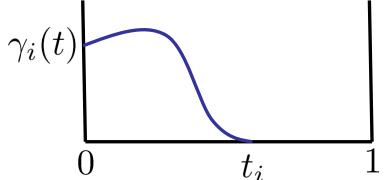
- $-\Psi = I$
- $\operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset$
- $-|\operatorname{supp}(x)| = |\operatorname{supp}(y)| = K$

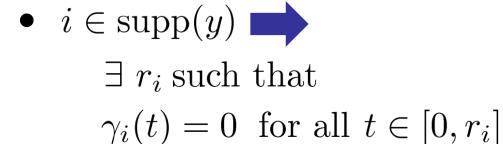
Necessary Conditions

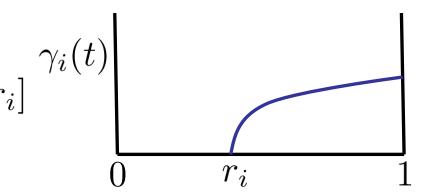
Three cases:

•
$$i \notin \operatorname{supp}(x) \cup \operatorname{supp}(y)$$
 \longrightarrow $\gamma_i(t) = 0$ for all $t \in [0, 1]$



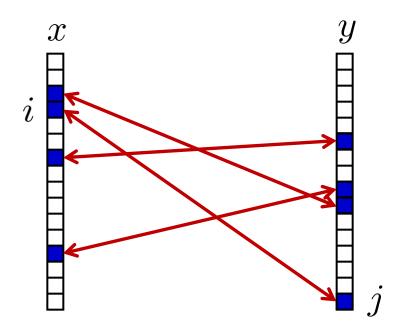






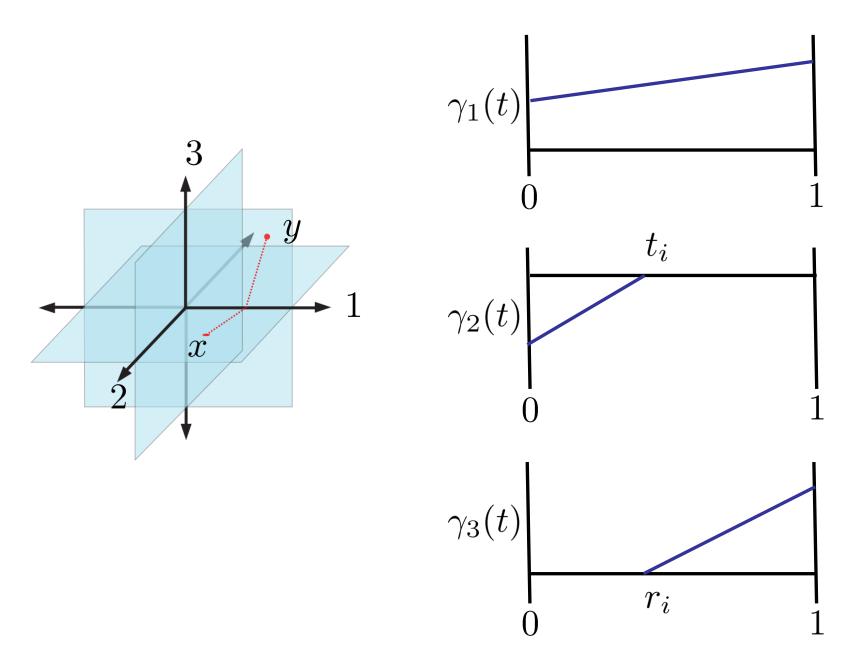
Support Matching

• Given a candidate $\gamma(t)$, we can define a matching $\mathcal M$ between the entries of x and y

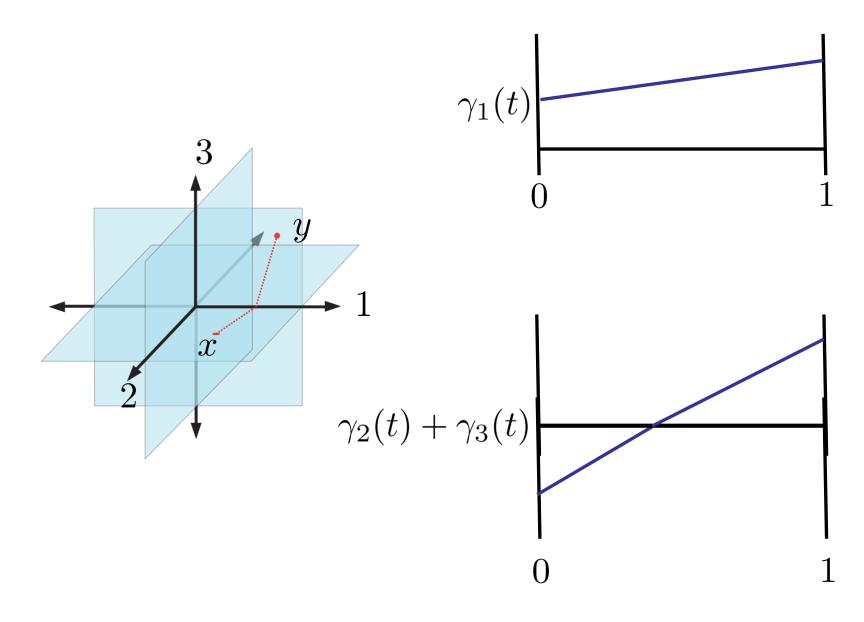


• We allow $(i,j) \in \mathcal{M}$ if and only if $t_i \leq r_j$

Geodesic "Unfolding"

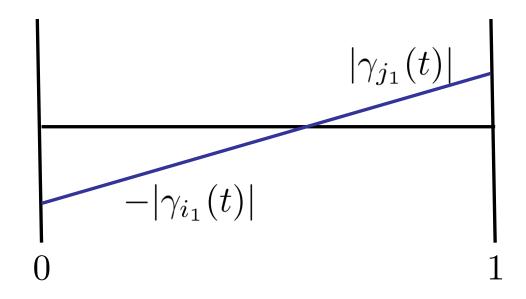


Geodesic "Unfolding"



Geodesic "Unfolding"

$$(i_1,j_1)\in\mathcal{M}$$



• Repeating for every $(i_k, j_k) \in \mathcal{M}$, we can map any candidate geodesic $\gamma(t)$ into a path in \mathbb{R}^K from $-|\gamma_I(0)|$ to $|\gamma_J(1)|$

Sketch of Derivation

1. Any potential geodesic path is compatible with at least one matching

- 2. Given any potential geodesic path, its length is equal to the length of the corresponding "unfolded" path
- 3. Given any matching, the shortest path in the "unfolded" space is a straight line
- 4. This line defines a valid geodesic path

Matching Dependent Geodesic

• Given a matching \mathcal{M} , the shortest path compatible with this matching has length

$$\sqrt{\sum_{k=1}^{K} (|x_{i_k}| + |y_{j_k}|)^2}$$

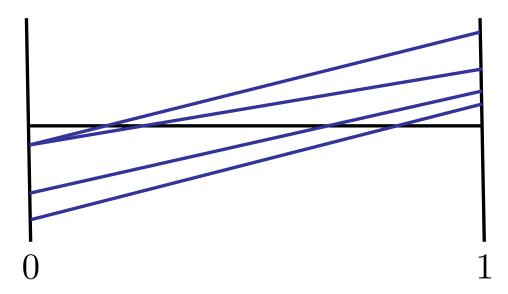
 Finding the shortest path is equivalent to finding the best matching

Optimal Matching

We want to minimize

$$\sum_{k=1}^{K} (|x_{i_k}| + |y_{j_k}|)^2 = ||x - y||_2^2 + 2\sum_{k=1}^{K} |x_{i_k}||y_{j_k}|$$

• Set $|x_{i_1}| \le |x_{i_2}| \le \cdots \le |x_{i_K}|$ $|y_{j_1}| \ge |y_{j_2}| \ge \cdots \ge |y_{j_K}|$



Observations

 Attempts to equalize the value of each term in the sum

$$d_{\Sigma_K}(x,y) = \sqrt{\|x - y\|_2^2 + 2\sum_{k=1}^K |x_{i_k}| |y_{j_k}|}$$

• Assume $x_{i_k} = C_x$ and $y_{j_k} = C_y$

$$\sum_{k=1}^{K} |x_{i_k}| |y_{j_k}| = KC_x C_y = ||x||_2 ||y||_2$$

$$||x - y||_2 \le d_{\Sigma_K}(x, y) \le ||x||_2 + ||y||_2$$

Example

$$d_{\Sigma_K}(x, x+n) = ||n||_2$$

$$d_{\Sigma_K}(x, x+n) > ||n||_2$$

20 dB SNR

30 dB

What is it good for?

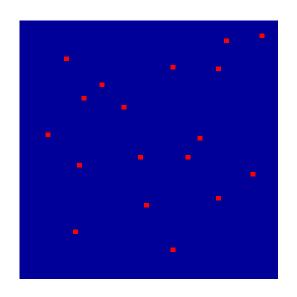
- Incorporating prior knowledge
 - use geodesic distance as input to kNN, SVM, or other kernel-based learning algorithm
- Semi-supervised learning
 - combine with dictionary learning algorithmssuch as K-SVD [Aharon 2006]

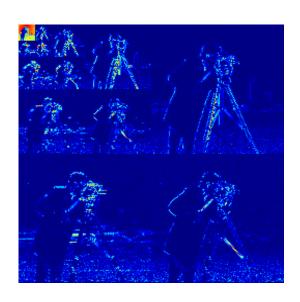
- Signal morphing/interpolation
- "Absolutely nothin'!"?

[Starr 1970]

Extensions

Structured sparsity





- Compressible data
 - truncate to enforce sparsity
 - geodesic distance on ℓ_p and/or $w\ell_p$ balls

Conclusions

- For the simple sparse setting
 - analytic formula available
 - doesn't differ much from Euclidean distance
- Important to incorporate additional structure/models
 - still possible to derive a formula?
 - can it be computed efficiently?
- Promising applications?

dsp.rice.edu