
Sparse Geodesic Paths

Mark Davenport and Richard Baraniuk

Rice University

ECE Department



Data Deluge

• Size:  281 billion gigabytes generated in 2007

digital bits > stars in the universe

growing by a factor of 10 every 5 years 

> Avogadro’s number (6.02x1023) in 15 years

• In 2007 digital data generated > total storage

by 2011, ½ of digital universe will have no home

• Growth fueled by sensor data 

audio, acoustics, images, video, sensor nets, …

[Source: IDC Whitepaper “The Diverse and Exploding Digital Universe” March 2008]



Data Deluge

How can we extract as much information

as possible from a limited amount of data?

How can we extract any information at all from

a massive amount of high-dimensional data?



Low-Dimensional Models

• We must overcome the “curse of 
dimensionality”

• Most data is highly structured – not a 
space-filling point cloud 

• Data lies on or near a low-dimensional set

– parametric/generative models 

– topological manifold of dimension 



Manifolds

• How is manifold structure 
exploited in practice?

• Replace Euclidean distance
with geodesic distance

Geodesic path Geodesic distance



Sparse Signals

Sparse:             nonzero coefficients

Compressible:             important coefficients

DCT, wavelets

Basis

transformation



Unions of Subspaces

• Sparse signal  subspaces

– subspace model: linear

– sparse model: nonlinear

– sparse model = union of       subspaces



Sparsity vs Manifolds

• Does the set of sparse signals form a 
manifold?

• Union of multiple manifolds

• Same lessons apply – we can still exploit 
the low-dimensional structure 



Sparse Geodesic Paths

• Assumptions

–

–

–



Necessary Conditions

Three cases:

•

•

•



Support Matching

• Given a candidate     , we can define a 
matching between the entries of   and

• We allow              if and only if



Geodesic “Unfolding” 



Geodesic “Unfolding”



Geodesic “Unfolding”

• Repeating for every                , we can 
map any candidate geodesic      into a 
path in      from            to



Sketch of Derivation

1. Any potential geodesic path is compatible 
with at least one matching

2. Given any potential geodesic path, its 
length is equal to the length of the 
corresponding “unfolded” path

3. Given any matching, the shortest path in 
the “unfolded” space is a straight line

4. This line defines a valid geodesic path



Matching Dependent Geodesic

• Given a matching    , the shortest path 
compatible with this matching has length

• Finding the shortest path is equivalent to 
finding the best matching



Optimal Matching

• We want to minimize

• Set



Observations

• Attempts to equalize the value of each 
term in the sum

• Assume            and



Example

10 dB 20 dB 30 dB

SNR



What is it good for?

• Incorporating prior knowledge

– use geodesic distance as input to kNN, SVM, or 
other kernel-based learning algorithm  

• Semi-supervised learning

– combine with dictionary learning algorithms 
such as K-SVD [Aharon 2006]

• Signal morphing/interpolation

• “Absolutely nothin’!”?               [Starr 1970]



Extensions

• Structured sparsity

• Compressible data

– truncate to enforce sparsity

– geodesic distance on     and/or        balls



Conclusions

• For the simple sparse setting

– analytic formula available

– doesn’t differ much from Euclidean distance

• Important to incorporate additional 
structure/models

– still possible to derive a formula?

– can it be computed efficiently?

• Promising applications?
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