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Beyond Sparsity
Not all signal models fit neatly into the “sparse” setting

The concept of “dimension” has many incarnations
- “degrees of freedom”

- constraints

- parameterizations

- signal families

How can we exploit these low-dimensional models?

| will focus primarily on just a few of these

- structured sparsity, finite-rate-of-innovation, manifolds,
low-rank matrices



Structured Sparsity




Structured Sparsity

e Sparse signal model captures
simplistic primary structure

e Modern compression/processing algorithms capture
richer secondary coefficient structure

pixels:
background subtracted
images

wavelets: Gabor atoms:
natural images chirps/tones



Sparse Signals

Traditional sparse models allow all possible
S -dimensional subspaces




Wavelets and Tree-Sparse Signals

Model: S nonzero coefficients lie on a connected tree
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Wavelet Sparse
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Tree Sparse
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Recall: CoSaMP

e The heart of CoSaMP (and many other algorithms) is
hard thresholding

T = hard(z, S)

e This can be viewed as a projection onto the set of all
possible S-sparse signals

e “Model-based CoSaMP”: Replace hard thresholding with a
more suitable projection

T =Pnm(x)



Tree-Sparse Sighal Recovery

VAV

target signal CoSaMP

AVAY,

Tree-sparse CoSaMP ¢{-minimization

N = 1024

M = 80

[Baraniuk, Cevher, Duarte, and Hegde - 2008]



Other Useful Models

e Clustered coefficients
- tree sparse » -
- block sparse

- Ising models

e Dispersed coefficients
- spike trains
- pulse trains

-




Block-Sparsity

target

N = 4096

K = 6 active blocks
J = 64 (block length)
M = 2.5JK = 960

block-sparse CoSaMP
[Baraniuk, Cevher, Duarte, and Hegde - 2008]



Clustered Signals

e Probabilistic approach to modeling
clustering of significant pixels using
Ising Markov Random Field model

 Ising model projection can be performed
efficiently using graph cuts

target Ising-model CoSaMP LP (FPC)
recovery recovery recovery

[Baraniuk, Cevher, Duarte, and Hegde - 2008]



Sparse Spike Trains

e Sequence of pulses

e Simple model:
- sequence of Dirac pulses

- refractory period A
between each pulse

e« Model-based RIP if
M = O(Slog(N/S — A))
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[Hegde, Duarte, and Cevher - 2009]



Sparse Pulse Trains

e More realistic model:
- spike train convolved with a pulse shape (of length L)
- refractory period between each pulse of length A

e Model-based RIP if M = O(L 4 Slog(N/S — A))

Model-based
CoSaMP

original CoSaMP
N = 4096

S=7
L =125
A =10
M = 290

[Hegde and Baraniuk - 2010]



Parametric and
Manifold Models




Finite Rate of Innovation

Continuous-time notion of sparsity: “rate of innovation”

Examples:
M AL A AT
1 1
Innovations

Rate of innovation:
Expected number of innovations per second

[Vetterli, Marziliano, and, Blu - 2002; Dragotti, Vetterli, and Blu - 2007]



Sampling Sighals with FROI

We would like to obtain samples of the form
y[m] — Gﬁ(t) * x(t)|t:st — (cb(mTS o t)a 33(t)>

where we sample at the rate of innovation.

Requires careful construction of sampling kernel ¢(t).

Drawbacks:

- need to repeat process for each signal model
- stability

[Vetterli, Marziliano, and, Blu - 2002; Dragotti, Vetterli, and Blu - 2007]



Manifolds

e S-dimensional parameter 0 € © RN
captures the degrees of freedom @
of signal

e Signal class forms an
S -dimensional manifold

- rotations, translations
- robot configuration spaces

- signal with unknown translation
- sinusoid of unknown frequency
- faces

- handwritten digits
- speech




Random Projections

e For sparse sighals, random projections preserve geometry
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« What about manifolds?



Whitney’s Embedding Theorem (1936)
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S-dimensional M > 25 random
smooth projections suffice
compact to embed the
manifold...

But very unstable!



Stable Manifold Embedding

Theorem:
Let M C R” be a compact S-dimensional RY
manifold with / L1
- condition number 1/7 (curvature, self-avoiding)
L2
- volume V
Let ® be a random M x N projection with
d
M = O(Slog(NV/T))
RM
v

Then with high probability, and any z{, x5 € M
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[Baraniuk and Wakin - 2009]



Stable Manifold Embedding

Sketch of proof:

- construct a sampling of points °
= on manifold at fine resolution ~
= from local tangent spaces ® 6 0 4 o
- apply JL lemma to these points .. o ®
®

M = O(Slog(NV/T))

- extend to entire manifold

Implications:

Nonadaptive (even random) linear projections can
efficiently capture & preserve structure of manifold

See also: Indyk and Naor, Agarwal et al., Dasgupta and Freund
[Baraniuk and Wakin - 2009]



Compressive Sensing with Manifolds
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Same sensing protocols/devices

Different reconstruction models

Measurement rate depends on manifold dimension
Stable embedding guarantees robust recovery



Sighal Recovery

¥ = argmin ||z — 2’|
r'eM

T = argmin ||y — 2’|
' eM



Example: Edges




Low-Rank Matrices




Low-Rank Matrices

Singular value decomposition:

X =UXV" — ~ NR < N*
degrees of freedom



Matrix Completion
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o Collaborative filtering (“Netflix problem”)
« How many samples will we need?

M >CNR

e Coupon collector problem
M > Nlog N



Low-Rank Matrix Recovery

Given:

e an N X N matrix X of rank R
 linear measurements y = A(X)

How can we recover X ?

4 )

X = arginf rank(X)
X:A(X)=y

- J

Can we replace this with something computationally feasible?



Nuclear Norm Minimization
Convex relaxation!
N
Replace rank(X) with | X|[l. =) |0
j=1

The “nuclear norm” is just the ¢,-norm of the vector of
singular values

4 \
X

arginf || X«
X:A(X)=y

M = O(NRlogN)

[Candes, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]



Conclusions

“Conciseness” has many incarnations

Structured sparsity
- usually present in practice
- often allows for significant improvements

Manifolds

- very common
- very general

Low-rank matrices
- exciting community, lots of open problems



