# **Compressive Sensing Part IV: Beyond Sparsity**

Mark A. Davenport

Stanford University Department of Statistics



## **Beyond Sparsity**

- Not all signal models fit neatly into the "sparse" setting
- The concept of "dimension" has many incarnations
  - "degrees of freedom"
  - constraints
  - parameterizations
  - signal families
- How can we exploit these low-dimensional models?
- I will focus primarily on just a few of these
  - structured sparsity, finite-rate-of-innovation, manifolds, low-rank matrices

## **Structured Sparsity**

## **Structured Sparsity**

- Sparse signal model captures simplistic primary structure
- Modern compression/processing algorithms capture *richer secondary coefficient structure*







wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images

## Sparse Signals

Traditional sparse models allow all possible S-dimensional subspaces



### Wavelets and Tree-Sparse Signals

*Model:* S nonzero coefficients lie on a connected tree





### Wavelet Sparse



 $M = O(S \log(N/S))$ 

### **Tree Sparse**



#### Recall: CoSaMP

 The heart of CoSaMP (and many other algorithms) is hard thresholding

$$\widehat{x} = \operatorname{hard}(x, S)$$

- This can be viewed as a projection onto the set of all possible S-sparse signals
- *"Model-based CoSaMP"*: Replace hard thresholding with a more suitable projection

$$\widehat{x} = \mathcal{P}_{\mathcal{M}}(x)$$

### Tree-Sparse Signal Recovery



[Baraniuk, Cevher, Duarte, and Hegde - 2008]

## **Other Useful Models**

- Clustered coefficients
  - tree sparse
  - block sparse
  - Ising models



- Dispersed coefficients
  - spike trains
  - pulse trains



## **Block-Sparsity**



[Baraniuk, Cevher, Duarte, and Hegde - 2008]

## **Clustered Signals**

- Probabilistic approach to modeling clustering of significant pixels using Ising Markov Random Field model
- Ising model projection can be performed efficiently using graph cuts





[Baraniuk, Cevher, Duarte, and Hegde - 2008]

## Sparse Spike Trains

Sequence of pulses

![](_page_13_Figure_2.jpeg)

- sequence of Dirac pulses
- refractory period  $\Delta$  between each pulse
- Model-based RIP if

 $M = O(S \log(N/S - \Delta))$ 

![](_page_13_Figure_7.jpeg)

### Sparse Spike Trains

![](_page_14_Figure_1.jpeg)

[Hegde, Duarte, and Cevher - 2009]

### **Sparse Pulse Trains**

- More realistic model:
  - spike train convolved with a pulse shape (of length L )
  - refractory period between each pulse of length  $\Delta$
- Model-based RIP if  $M = O(L + S \log(N/S \Delta))$

![](_page_15_Figure_5.jpeg)

[Hegde and Baraniuk - 2010]

Model-based

## Parametric and Manifold Models

## Finite Rate of Innovation

Continuous-time notion of sparsity: "rate of innovation"

Examples:

![](_page_17_Figure_3.jpeg)

Rate of innovation: Expected number of innovations per second

[Vetterli, Marziliano, and, Blu - 2002; Dragotti, Vetterli, and Blu - 2007]

## Sampling Signals with FROI

We would like to obtain samples of the form

$$y[m] = \phi(t) * x(t)|_{t=mT_s} = \langle \phi(mT_s - t), x(t) \rangle$$

where we sample at the *rate of innovation*.

Requires careful construction of sampling kernel  $\phi(t)$  .

Drawbacks:

- need to repeat process for each signal model
- stability

[Vetterli, Marziliano, and, Blu - 2002; Dragotti, Vetterli, and Blu - 2007]

## Manifolds

- S-dimensional parameter  $\theta \in \Theta$  captures the degrees of freedom of signal
- Signal class forms an S-dimensional manifold
  - rotations, translations
  - robot configuration spaces
  - signal with unknown translation
  - sinusoid of unknown frequency
  - faces
  - handwritten digits
  - speech

![](_page_19_Figure_10.jpeg)

![](_page_19_Picture_11.jpeg)

## **Random Projections**

• For sparse signals, random projections preserve geometry

![](_page_20_Figure_2.jpeg)

• What about manifolds?

## Whitney's Embedding Theorem (1936)

![](_page_21_Figure_1.jpeg)

S-dimensional smooth compact M > 2S random projections suffice to embed the manifold...

But very unstable!

## Stable Manifold Embedding

#### Theorem:

Let  $\mathcal{M} \subseteq \mathbb{R}^N$  be a compact S-dimensional manifold with

- condition number 1/ au (curvature, self-avoiding)
- volume V

Let  $\Phi$  be a random  $M\times N$  projection with

 $M = O(S \log(NV/\tau))$ 

Then with high probability, and any  $x_1, x_2 \in \mathcal{M}$ 

$$1 - \delta \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta$$

 $\mathbb{R}^{N}$ 

## Stable Manifold Embedding

#### Sketch of proof:

- construct a sampling of points
  - on manifold at fine resolution
  - from local tangent spaces
- apply JL lemma to these points

 $M = O(S \log(NV/\tau))$ 

- extend to entire manifold

#### Implications:

Nonadaptive (even random) linear projections can efficiently capture & preserve structure of manifold

See also: Indyk and Naor, Agarwal et al., Dasgupta and Freund

[Baraniuk and Wakin - 2009]

![](_page_23_Figure_12.jpeg)

## Compressive Sensing with Manifolds

![](_page_24_Figure_1.jpeg)

- Same sensing protocols/devices
- Different reconstruction models
- Measurement rate depends on *manifold dimension*
- Stable embedding guarantees robust recovery

## Signal Recovery

![](_page_25_Figure_1.jpeg)

$$x^* = \underset{x' \in \mathcal{M}}{\arg\min} \|x - x'\|_2$$

$$\widehat{x} = \underset{x' \in \mathcal{M}}{\arg\min} \|y - \Phi x'\|_2$$

## Example: Edges

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

## Low-Rank Matrices

### Low-Rank Matrices

![](_page_28_Figure_1.jpeg)

Singular value decomposition:

$$X = U\Sigma V^* \qquad \blacksquare$$

 $\approx NR \ll N^2$  degrees of freedom

## Matrix Completion

![](_page_29_Figure_1.jpeg)

- Collaborative filtering ("Netflix problem")
- How many samples will we need?

 $M \geq CNR$ 

• Coupon collector problem

 $M \geq N \log N$ 

#### Low-Rank Matrix Recovery

Given:

- an  $N \times N$  matrix X of rank R
- linear measurements  $y = \mathcal{A}(X)$

How can we recover X ?

$$\widehat{X} = \underset{X:\mathcal{A}(X)=y}{\operatorname{arg\,inf}} \operatorname{rank}(X)$$

Can we replace this with something computationally feasible?

#### **Nuclear Norm Minimization**

**Convex relaxation!** 

Replace rank(X) with 
$$||X||_* = \sum_{j=1}^N |\sigma_j|$$

The "nuclear norm" is just the  $\ell_1$ -norm of the vector of singular values

$$\widehat{X} = \underset{X:\mathcal{A}(X)=y}{\operatorname{arg\,inf}} \|X\|_{*}$$

$$M = O(NR \log N)$$

[Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]

## Conclusions

- "Conciseness" has many incarnations
- Structured sparsity
  - usually present in practice
  - often allows for *significant improvements*
- Manifolds
  - very common
  - very general
- Low-rank matrices
  - exciting community, *lots of open problems*