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Beyond Sparsity 

• Not all signal models fit neatly into the “sparse” setting 

 

• The concept of “dimension” has many incarnations 

– “degrees of freedom” 

– constraints 

– parameterizations 

– signal families 

 

• How can we exploit these low-dimensional models? 

 

• I will focus primarily on just a few of these 

– structured sparsity, finite-rate-of-innovation, manifolds,  

low-rank matrices 



Structured Sparsity 



Structured Sparsity 

• Sparse signal model captures  

simplistic primary structure 
 

• Modern compression/processing algorithms capture  

richer secondary coefficient structure 

 

wavelets: 

natural images 

Gabor atoms: 

chirps/tones 

pixels: 

background subtracted 

images 



Sparse Signals 

Traditional sparse models allow all possible   

   -dimensional subspaces 

 



Wavelets and Tree-Sparse Signals 

Model:     nonzero coefficients lie on a connected tree 



Wavelet Sparse 



Tree Sparse 



Recall: CoSaMP 

• The heart of CoSaMP (and many other algorithms) is  

hard thresholding 

 

 

 

• This can be viewed as a projection onto the set of all 

possible    -sparse signals 

 

• “Model-based CoSaMP”:  Replace hard thresholding with a 

more suitable projection 



Tree-Sparse Signal Recovery 

target signal  CoSaMP 

Tree-sparse CoSaMP    -minimization 

 [Baraniuk, Cevher, Duarte, and Hegde – 2008] 



Other Useful Models 

• Clustered coefficients 

– tree sparse 

– block sparse 

– Ising models 

 

 

 

• Dispersed coefficients 

– spike trains 

– pulse trains 

 



Block-Sparsity 

active blocks 

target CoSaMP  

block-sparse CoSaMP 

 [Baraniuk, Cevher, Duarte, and Hegde – 2008] 

(block length) 



Clustered Signals 

• Probabilistic approach to modeling 

clustering of significant pixels using  

Ising Markov Random Field model 
 

• Ising model projection can be performed 

efficiently using graph cuts 

target Ising-model 

recovery 

CoSaMP 

recovery 

LP (FPC) 

recovery 

 [Baraniuk, Cevher, Duarte, and Hegde – 2008] 



Sparse Spike Trains 

• Sequence of pulses 

 

 

• Simple model:  

– sequence of Dirac pulses 

– refractory period  

between each pulse 

 

• Model-based RIP if 

 

 

 

 



Sparse Spike Trains 

 [Hegde, Duarte, and Cevher – 2009] 

target Model-based CoSaMP error 

CoSaMP error 



Sparse Pulse Trains 

• More realistic model:  

– spike train convolved with a pulse shape (of length    ) 

– refractory period between each pulse of length  

 

• Model-based RIP if 

original CoSaMP 
Model-based 

CoSaMP 

 [Hegde and Baraniuk – 2010] 



Parametric and  

Manifold Models 



Finite Rate of Innovation 

Continuous-time notion of sparsity: “rate of innovation” 
 

Examples: 

 

 

 

 

 

 

Rate of innovation:  

Expected number of innovations per second 

 [Vetterli, Marziliano, and, Blu – 2002; Dragotti, Vetterli, and Blu - 2007] 

Innovations 



Sampling Signals with FROI 

We would like to obtain samples of the form 

 

 

where we sample at the rate of innovation. 

 

Requires careful construction of sampling kernel        . 

 

Drawbacks: 

– need to repeat process for each signal model 

– stability 

 [Vetterli, Marziliano, and, Blu – 2002; Dragotti, Vetterli, and Blu - 2007] 



Manifolds 

•    -dimensional parameter           

captures the degrees of freedom 

of signal 
 

• Signal class forms an     

   -dimensional manifold 

– rotations, translations 

– robot configuration spaces 

– signal with unknown translation 

– sinusoid of unknown frequency 

– faces 

– handwritten digits 

– speech 

– … 



Random Projections 

• For sparse signals, random projections preserve geometry 

 

 

 

 

 

 

 

 

 

• What about manifolds? 



Whitney’s Embedding Theorem (1936) 

   -dimensional 

smooth 

compact 

              random 

projections suffice 

to embed the 

manifold…    

 

But very unstable! 



Stable Manifold Embedding 

Theorem: 

Let                 be a compact    -dimensional  

manifold with 

– condition number        (curvature, self-avoiding) 

– volume 
 

Let     be a random             projection with 

 

 

Then with high probability, and any  

 [Baraniuk and Wakin – 2009] 



Stable Manifold Embedding 

Sketch of proof: 

– construct a sampling of points 

 on manifold at fine resolution 

 from local tangent spaces 

– apply JL lemma to these points 

 

 

– extend to entire manifold 

 

Implications:  
 

 Nonadaptive (even random) linear projections can 
efficiently capture & preserve structure of manifold  
 

See also: Indyk and Naor, Agarwal et al., Dasgupta and Freund 

 [Baraniuk and Wakin – 2009] 



Compressive Sensing with Manifolds 

? 

• Same sensing protocols/devices 

• Different reconstruction models 

• Measurement rate depends on manifold dimension 

• Stable embedding guarantees robust recovery 



Signal Recovery 



 [Wakin – 2007] 

Example: Edges 

original 

256x256 

wedgelet estimate 

12 #’s/block 

oracle 

(best possible) 

wedgelets 

CS (MP) recon 

M=3072 

16x16 

block 



Low-Rank Matrices 



Low-Rank Matrices 

Singular value decomposition: 

degrees of freedom 



Matrix Completion 

• Collaborative filtering (“Netflix problem”) 

• How many samples will we need? 

 
 

• Coupon collector problem 



Low-Rank Matrix Recovery 

Given: 

• an            matrix     of rank  

• linear measurements 

 

How can we recover     ? 

 

 

 

 

 

Can we replace this with something computationally feasible? 



Nuclear Norm Minimization 

Convex relaxation! 

 

Replace               with                         

 

The “nuclear norm” is just the    -norm of the vector of 

singular values 

 

 

 

 

 [Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, …] 



Conclusions 

• “Conciseness” has many incarnations 

 

• Structured sparsity 

– usually present in practice 

– often allows for significant improvements 

 

• Manifolds 

– very common 

– very general 

 

• Low-rank matrices 

– exciting community, lots of open problems 


