Compressive Sensing Part II: Sensing Matrices and Real-World Sensors

Mark A. Davenport

Stanford University Department of Statistics

Compressive Sensing

Replace samples with general *linear measurements*

$$y = \Phi x$$

[Donoho; Candès, Romberg, and Tao - 2004]

Analog Sensing is Matrix Multiplication

Sensing Matrix Design

Restricted Isometry Property (RIP)

$$1 - \delta \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta \qquad \|x_1\|_0, \|x_2\|_0 \le S$$

RIP and Stability

If we want to guarantee that

$$\|x - \hat{x}\|_2 \le C \|e\|_2$$

then we must have

$$\frac{1}{C} \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \qquad \|x\|_0 \le 2S$$

How Many Measurements?

If Φ satisfies the RIP with constant δ , then

 $M > C_{S,\delta} S \log \left(N/S \right)$

Sketch of proof: Construct a set \mathcal{X} such that

- for any $x \in \mathcal{X}, \|x\|_0 = S$
- $|\mathcal{X}| \approx (N/S)^S$
- for any pair $x, y \in \mathcal{X}, 1 \leq \|x y\|_2 \leq 2$

Sub-Gaussian Distributions

- Sub-Gaussian: $\mathbb{E}(e^{Xt}) \leq e^{c^2t^2/2}$
 - Gaussian
 - Bernoulli/Rademacher (± 1)
 - any bounded distribution
- Strictly sub-Gaussian: $\mathbb{E}(e^{Xt}) \leq e^{\sigma^2 t^2/2}$
- For any x, if the entries of Φ are sub-Gaussian, then there exist α and β such that w.h.p.

$$\alpha \|x\|_2^2 \le \|\Phi x\|_2^2 \le \beta \|x\|_2^2$$

Strictly sub-Gaussian

Johnson-Lindenstrauss Lemma

• Stable projection of a discrete set of P points

- Pick Φ at *random* using a *sub-Gaussian* distribution
- For any fixed x, $\|\Phi x\|_2$ concentrates around $\|x\|_2$ with (exponentially) high probability
- We preserve the length of all $O(P^2)$ difference vectors simultaneously if $M = O(\log P^2) = O(\log P)$.

JL Lemma Meets RIP

$$1 - \delta \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \le 1 + \delta \qquad \|x\|_0 \le 2S$$

[Baraniuk, D, DeVore, and Wakin -2008]

RIP Matrix: Option 1

- Choose a *random matrix*
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a "random subspace"

$$M = O(S \log(N/S)) \ll N$$

[Baraniuk, D, DeVore, and Wakin -2008]

RIP Matrix: Option 2

Random Fourier submatrix

$$M = O(S \log^p(N/S)) \ll N$$

[Candès and Tao - 2006]

"Fast JL Transform"

- By first multiplying by random signs, a random Fourier submatrix can be used for efficient JL embeddings
- If you multiply the columns of *any* RIP matrix by random signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010]

Hallmarks of Random Measurements

Stable

With high probability, Φ will preserve information, be robust to noise

Universal

 Φ will work with **any** fixed orthonormal basis (w.h.p.)

Democratic

Each measurement has "equal weight"

Compressive Sensors in Practice

Tomography in the Abstract

Fourier-Domain Interpretation

- Each projection gives us a "slice" of the 2D Fourier transform of the original image
- Similar ideas in MRI
- Traditional solution: Collect lots (and lots) of slices

Why CS?

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

CS for MRI Reconstruction

Backproj., 29.00dB

Min TV, 34.23dB [CR]

Multi-Slice Brain Imaging

- Scan reduction: x2.4
- Transform: wavelet

Pediatric MRI

Traditional MRI

CS MRI

4-8 x faster!

[Vasanawala, Alley, Hargreaves, Barth, Pauly, and Lustig - 2010]

$$y[m] = \sum_{n \in I_m} x[n]$$

$$x[n] = \iint_{\text{pixel } n} x(t_1, t_2) \, dt_1 \, dt_2$$

[Duarte, D, Takhar, Laska, Sun, Kelly, and Baraniuk - 2008]

1 Chip DLP™ Projection

TI Digital Micromirror Device

oops, crash, seven million years bad luck !?!

I can't wait to take this on my next vacation

This is me skydiving

. This is me swimming with dolphins . This is me at the grand canyon

First Images

Original

 16384 Pixels
 16384 Pixels

 1600 Measurements
 3300 Measurements

 (10%)
 (20%)

65536 Pixels 1300 Measurements (2%)

65536 Pixels 3300 Measurements (5%)

World's First Photograph

- 1826, Joseph Niepce
- Farm buildings and sky
- 8 hour exposure

Color Imaging

4096 Pixels 800 (20%) Measurements

4096 Pixels 1600 (40%) Measurements

Two strategies:

- 1. Prism assembly
- 2. Layered sensors (ala Foveon)

Low-Light Imaging with PMT

Blue

256 x 256 image with 10:1 compression

IR Imaging

1%

2%

5%

10%

IR Imaging

Raster scans: Light from only one pixel

32 × 32

256 × 256

Compressive sensing: Light from half the pixels

256 × 256

Hyperspectral Imaging

Sum of all bands

Real target

Hyperspectral Imaging

THz Imaging

[Mittleman Group, Rice University]

THz Imaging: Sampling in Fourier

[Mittleman Group, Rice University]

Compressive ADCs

DARPA "Analog-to-information" program: Build high-rate ADC for signals with sparse spectra

Compressive ADCs

DARPA "Analog-to-information" program: Build high-rate ADC for signals with sparse spectra

[Le - 2005; Walden - 2008]

Analog-to-Information Conversion

- Many applications particularly in RF have hit an ADC performance brick wall
 - limited bandwidth (# Hz)
 - limited dynamic range (# bits)
 - deluge of bits to process downstream
- "Moore's Law" for ADC's: doubling in performance only every 6 years
- Inspiration from CS:
 - "analog-to-information" conversion

Random Demodulator

Random Demodulator

Random Demodulator

Empirical Results

 $M \approx 1.7S \log(N/S + 1)$

Example: Frequency Hopper

Nyquist rate sampling

20x sub-Nyquist sampling

Compressive Multiplexor

Random Demodulator

[Slavinsky, Laska, D, and Baraniuk - 2011]

Compressive Multiplexor in Hardware

- Boils down to:
 - 1 LFSR
 - J switches
 - 2J resistors
 - 2 op amps
 - 1 low-rate ADC

1.1mm x 1.1mm ASIC on its way!

[Slavinsky, Laska, D, and Baraniuk - 2011]

Compressive ADCs: Challenges Ahead

- Calibration!
 - you must know Φ to recover (or do anything else)
 - big challenge for all approaches
 - can often be mitigated by certain design choices
- Algorithms
 - recovery algorithms are much faster than a few years ago, but still can't operate in real time on GHz bandwidths
 - is recovery always necessary?
- Applications
 - noise can be a problem
 - good signal models are key

Compressive Sensors Wrap-up

- CS is built on a theory of *random measurements*
 - Gaussian, Bernoulli, random Fourier, fast JLT
 - stable, universal, democratic
- Randomness can often be built into real-world sensors
 - tomography
 - cameras
 - compressive ADCs
 - microscopes, sensor networks, DNA microarrays, radar, ...
- OK, we can build these devices. What are they actually good for? When are they appropriate?