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Abstract

Compressive sensing (CS) has recently emerged as a framework for efficiently capturing
signals that are sparse or compressible in an appropriate basis. While often motivated as an al-
ternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional
CS framework and the problem of acquiring a continuous-time signal. In this paper, we attempt
to bridge this gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS’s), a collec-
tion of functions that trace back to the seminal work by Slepian, Landau, and Pollack on the
effects of time-limiting and bandlimiting operations. DPSS’s form a highly efficient basis for
sampled bandlimited functions; by modulating and merging DPSS bases, we obtain a dictio-
nary that offers high-quality sparse approximations for most sampled multiband signals. This
multiband modulated DPSS dictionary can be readily incorporated into the CS framework. We
provide theoretical guarantees and practical insight into the use of this dictionary for recovery
of sampled multiband signals from compressive measurements.

Keywords: Compressive sensing, multiband signals, Discrete Prolate Spheroidal Sequences, Fourier
analysis, sampling, block-sparsity, approximation, signal recovery, greedy algorithms

1 Introduction

1.1 Compressive sensing of analog signals

In recent decades the digital signal processing community has enjoyed enormous success in devel-
oping hardware and algorithms for capturing and extracting information from signals. Capitalizing
on the early work of Whitaker, Nyquist, Kotelnikov, and Shannon on sampling and representa-
tion of continuous signals, signal processing has moved from the analog to the digital domain and
ridden the wave of Moore’s law. Digitization has enabled the creation of sensing and processing
systems that are more robust, flexible, cheaper and, therefore, more ubiquitous than their analog
counterparts.

The foundation of this progress has been the Nyquist sampling theorem, which states that in
order to perfectly capture the information in an arbitrary continuous-time signal x(t) with bandlimit
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Bnyq

2 Hz, we must sample the signal at its Nyquist rate of Bnyq samples/sec. This requirement has
placed a growing burden on analog-to-digital converters as applications that require processing
signals of ever-higher bandwidth lead to ever-higher sampling rates. This pushes these devices
toward a physical barrier, beyond which their design becomes increasingly difficult and costly [76].

In recent years, compressive sensing (CS) has emerged as a framework that can significantly
reduce the acquisition cost at a sensor [2, 10, 27]. CS builds on the work of Candès, Romberg, and
Tao [13] and Donoho [27], who showed that a signal that can be compressed using classical methods
such as transform coding can also be efficiently acquired via a small set of nonadaptive, linear, and
usually randomized measurements.

There remains, however, a prominent gap between the theoretical framework of CS, which deals
with acquiring finite-length, discrete signals that are sparse or compressible in a basis or dictionary,
and the problem of acquiring a continuous-time signal. Previous work has attempted to bridge
this gap by employing two very different strategies. First, works such as [72] have employed a
simple multitone analog signal model that maps naturally into a finite-dimensional sparse model.
Although this assumption allows the reconstruction problem to be formulated directly within the
CS framework, the multitone model can be unrealistic for many analog signals of practical interest.
Alternatively, other authors have considered a more plausible multiband analog signal model that is
also amenable to sub-Nyquist sampling [8, 33, 34, 46, 47, 74]. These works, however, have involved
customized sampling protocols and reconstruction formulations that fall largely outside of the
standard CS framework. Indeed, some of this body of literature and many of its underlying ideas
actually pre-date the very existence of CS.

1.2 Contributions and paper organization

In this paper, we bridge this gap in a different manner. Namely, we show that when dealing with
finite-length windows of samples, it is possible to map the multiband analog signal model—in a very
natural way—into a finite-dimensional sparse model. One can then apply many of the standard
theoretical tools of CS to develop algorithms for both recovery as well as compressive domain
processing of multiband signals.

Our work actually rests on ideas that trace back to the classical signal processing literature
and the study of time-frequency localization. The Weyl-Heisenberg uncertainty principle states
that a signal cannot be simultaneously localized on a finite interval in both time and frequency.
A natural question is to what extent it is possible to concentrate a signal x(t) and its continuous-
time Fourier transform (CTFT) X(F ) near finite intervals. In an extraordinary series of papers
from the 1960s and 1970s, Slepian, Landau, and Pollack provide an in-depth investigation into
this question [41, 42, 62, 64, 66]. The implications of this body of work have had a tremendous
impact across a number of disciplines within mathematics and engineering, particularly in the field
of spectral estimation and harmonic analysis (e.g., [68]). Very few of these ideas have appeared
in the CS literature, however, and so one goal of this paper is to carefully explain—from a CS
perspective—the natural role that these ideas can indeed play in CS.

We begin this paper in Sections 2 and 3 with a description of our problem setup and a survey
of the necessary CS background material. In Section 4, we introduce the multitone and multiband
analog signal models. We then discuss how sparse representations for multiband signals can be
incorporated into the CS framework through the use of Discrete Prolate Spheroidal Sequences
(DPSS’s) [64]. First described by Slepian in 1978, DPSS’s form a highly efficient basis for sampled
bandlimited functions. For the sake of clarity and completeness, we provide a self-contained review
of the key results of from Slepian’s work that are most relevant to the problem of modeling sampled
multiband signals. We then explain how, by modulating and merging DPSS bases, one obtains a
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dictionary that—to a very high degree of approximation—provides a sparse representation for most
finite-length, Nyquist-rate sample vectors arising from multiband analog signals. We also explain
why the qualifiers “approximation” and “most” in the preceding sentence are necessary; however,
we characterize them formally and justify the use of the multiband modulated DPSS dictionary in
practical settings.

In Section 5, we discuss the use of the multiband modulated DPSS dictionary for recovery of
sampled multiband signals from compressive measurements. We discuss the implications (in terms
of formulating reconstruction procedures and guaranteeing their performance) of the fact that our
dictionary is not quite orthogonal; in fact, it may be undercomplete or overcomplete, depending
on the setting of a user-defined parameter. We also provide theoretical guarantees for recovery
algorithms that exploit the block-sparse nature of signal expansions in our dictionary. Ultimately,
this allows us to guarantee that most finite-length sample vectors arising from multiband analog
signals can—to a high degree of approximation—be recovered from a number of measurements that
is proportional to the underlying information level (also known as the Landau rate [40]).

In Section 6, we present the results of a detailed suite of simulations for signal recovery from
compressive measurements, illustrating the effectiveness of our proposed approaches on realistic
signals. We show that the reconstruction quality achieved using the multiband modulated DPSS
dictionary is far better than what is achieved using the discrete Fourier transform (DFT) as a
sparsifying basis. These results confirm that a DPSS-based dictionary can provide a very attractive
alternative to the DFT for sparse recovery. We conclude in Section 7 with a final discussion and
directions for future work.

1.3 Relation to existing work

Although customized measurement and reconstruction schemes [8, 33, 34, 46, 47, 74] have previously
been proposed for efficiently sampling multiband signals, we believe that our paper is of independent
interest from these works, specifically because we restrict ourselves to operating within the finite-
dimensional CS framework. There are a variety of plausible CS (and even non-CS) scenarios where
a sparse representation of a finite-length Nyquist-rate sample vector would be useful, and it is this
problem to which we devote our attention. This work may be of interest, for example, to any
practitioner who has struggled with the lack of sparsity that the DFT dictionary provides even
for pure sampled tones at “off-grid” frequencies. Moreover, as we discuss more fully in Section 2,
several analog CS hardware architectures can be viewed as providing random projections of finite-
length, Nyquist-rate sample vectors. Our formulation is compatible with these architectures and
does not require a customized sampling protocol.

It is important to mention that we are not the first authors to recognize the potential role
that DPSS’s (or their continuous-time counterparts, the Prolate Spheroidal Wave Functions, or
PSWF’s [41, 42, 62, 66]) can play in CS. Izu and Lakey [39] have drawn an analogy between sampling
bounds for multiband signals and classical results in CS, but not specifically for the purpose of
using the finite-dimensional CS framework for sparse recovery of sample vectors from multiband
analog signals. Gosse [36] has considered the recovery of smooth functions from random samples;
however, this work focuses on a very different setting, employing a PSWF (not DPSS) dictionary,
considering only baseband signals, and exploiting sparsity in a different way than our work. Senay
et al. [59, 60] have also considered a PSWF dictionary for reconstruction of signals from nonuniform
samples; however, this work also focuses on baseband signals and lacks formal approximation and
CS recovery guarantees. Oh et al. [52] have employed a modulated DPSS dictionary for sampled
bandpass signals; however, this work falls largely outside the standard CS framework and again lacks
formal approximation and CS recovery guarantees of the type we provide. Finally, Sejdić et al. [58]
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have proposed a multiband modulated DPSS dictionary very similar to our own and a greedy
algorithm for signal decomposition in that dictionary. However, this work is again not devoted
to developing sparse approximation guarantees for sampled multiband signals. It focuses not on
signal recovery but on identification of a communications channel, and the proposed reconstruction
algorithm is not intended to exploit block-sparse structure in the signal coefficients. We hope that
our paper will be a valuable addition to this nascent literature and help to encourage much further
exploration of the connections between DPSS’s, PSWF’s, and CS.

1.4 Preliminaries

Before proceeding, we first briefly introduce some mathematical notation that we will use through-
out the paper. We use bold characters to indicate finite-dimensional vectors and matrices. All such
vectors and matrices are indexed beginning at 0, so that the first element of a length-N vector x is
given by x[0] and the last by x[N − 1]. We denote the Hermetian transpose of a matrix A by AH .
We use ‖·‖p to denote the standard `p norm. We also use ‖x‖0 := |supp(x)| to denote the number
of nonzeros of x, and we say that x is S-sparse if ‖x‖0 = S. We use E [x] to denote expected value
of a random variable x and P [E] to denote the probability of an event E. Finally, we adopt the
convention j =

√
−1 throughout the paper.

2 Mapping Analog Sensing to the Digital Domain

In the standard CS setting, one is concerned with recovering a finite-dimensional vector x ∈ CN
from a limited number of measurements. A typical first order assumption is that the vector x is
sparse, meaning that there exists some basis or dictionary Ψ such that x = Ψα and α has a small
number of nonzeros, i.e., ‖α‖0 ≤ S for some S � N . One then acquires the measurements

y = Ax+ e (1)

where A ∈ CM×N maps x to a length-M vector y of complex-valued measurements, and where e
is a length-M vector that represents measurement noise generated by the acquisition hardware. In
the context of CS, one seeks to design A so that M is on the order of S (the number of degrees of
freedom of the signal) and potentially much smaller than N .

In the present work, however, we are concerned with the acquisition of a finite-length window
of a complex-valued, continuous-time signal, which we denote by x(t). Specifically, we suppose that
we are interested in a time window of length Tw seconds and that we acquire the measurements

y = Φ(x(t)) + e, (2)

where Φ is a linear measurement operator that maps functions defined on [0, Tw) to a length-M
vector y of measurements and e again represents measurement noise. We assume throughout this
paper that x(t) is bandlimited with bandlimit

Bnyq

2 Hz, i.e., that x(t) has a continuous-time Fourier
transform (CTFT)

X(F ) =

∫ ∞

−∞
x(t)e−j2πFtdt

such thatX(F ) = 0 for |F | > Bnyq

2 . Additional assumptions on x(t) will be specified in Section 4.1.2.
Because we assume that x(t) is bandlimited and that the measurement process (2) takes place

over a finite window of time, we restrict our attention to the problem of recovering the Nyquist-rate
samples of x(t) over this time interval. Specifically, we let Ts ≤ 1

Bnyq
denote a sampling interval (in
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seconds) chosen to meet the minimum Nyquist sampling rate, and we let x[n] denote the infinite-
length sequence that would be obtained by uniformly sampling x(t) with sampling period Ts, i.e.,
x[n] = x(nTs). We are interested in a time window of length Tw seconds, during which there are
N = dTwTs e samples. We let x = [x[0] x[1] · · · x[N − 1]]T denote x[n] truncated to the N samples
from 0 to N − 1. This paper is specifically devoted to the problem of recovering x, the vector of
Nyquist-rate samples of x(t) on [0, Tw),1 from compressive measurements y of the form (2).

To facilitate this, we first note that the sensing model in (2) is clearly very similar to the
standard CS model in (1). We briefly describe conditions under which these models are equivalent.
Recall from the Shannon-Nyquist sampling theorem that x(t) can be perfectly reconstructed from
x[n] since 1

Ts
≥ Bnyq. Specifically, we have the formula

x(t) =
∞∑

n=−∞
x[n] sinc (t/Ts − n) , (3)

where

sinc (t) =

{
sin(πt)/(πt), t 6= 0

1, t = 0.

Observe that since Φ is linear, we can express each measurement y[m] in (2) simply as the inner
product between x(t) and some sensing functional φm(t), i.e.,2

y[m] = 〈φm(t), x(t)〉+ e[m]. (4)

In this case we can use (3) to reduce (4) to

y[m] =

〈
φm(t),

∞∑

n=−∞
x[n] sinc (t/Ts − n)

〉
+e[m] =

∞∑

n=−∞
x[n] 〈φm(t), sinc (t/Ts − n)〉+e[m]. (5)

If we let A denote the M ×N matrix with entries given by

A[m,n] = 〈φm(t), sinc (t/Ts − n)〉

and let w denote the length-M vector with entries given by

w[m] =
∑

n≤−1

n≥N

x[n] 〈φm(t), sinc (t/Ts − n)〉 , (6)

then (2) reduces to
y = Ax+w + e. (7)

If the vector w = 0, then (7) is exactly equivalent to the standard CS sensing model in (1).
Moreover, if w is not zero but is small compared to e, then we can simply absorb w into e and
again reduce (7) to (1).

1Note that our goal is to recover x, which of course carries useful information about x(t), but recovering x may
not be sufficient for exactly recovering x(t) on the entire window [0, Tw). (This depends on the exact sampling rate
and the decay of the analog interpolation kernel.) In practice, the methods we describe in this paper for digital
single-window reconstruction could be implemented in a streaming multi-window setting, and this would allow for a
more accurate reconstruction of x(t) on the entire window.

2In our setup, since Φ : [0, Tw)→ CM , we are inherently assuming that φm(t) = 0 outside of the interval [0, Tw), so
that the sensing functionals are time-limited. Although certain acquisition systems (such as the modulated wideband
converter (MWC) of [47]) do not satisfy this condition, we believe that it is often a reasonable assumption in practice
and that many acquisition systems can at least be well-approximated as time-limited.
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A precise statement concerning the size of w would depend greatly on the choice of the φm(t).
While a detailed analysis of w for various practical choices of φm(t) is beyond the scope of this
paper, we briefly mention some possible strategies for controlling w. First, one can easily show
that if each φm(t) consists of any weighted combination of dirac delta functions positioned at times
0, Ts, . . . , (N − 1)Ts, then by construction w = 0. This should not be surprising, as in this case it
is clear that the measurements are simply a linear combination of the Nyquist-rate samples from
the finite window. Importantly, it is possible to collect measurements of this type without first
acquiring the Nyquist-rate samples (see, for example, the architecture proposed in [61]), although
there are also plenty of situations in which one might explicitly apply a matrix multiplication to
compress data after acquiring a length-N vector of Nyquist-rate samples.

For many architectures used in practice, it will not be the case that w = 0 exactly. However, it
may still be possible to ensure that w remains very small. There are a number of possible routes to
such a guarantee. For example, the φm(t) could be designed to incorporate a smooth window g(t) so
that we effectively sample x(t)g(t) instead of x(t), where g(t) is designed to ensure that x[n]g[n] ≈ 0
for n ≤ −1 or n ≥ N . The reconstruction algorithm could then compensate for the effect of g[n]
on 0, 1, . . . , N − 1. Alternatively, by considering a slightly oversampled version of x(t) (so that 1

Ts
exceeds Bnyq by some nontrivial amount) it is also possible to replace the sinc interpolation kernel
with one that decays significantly faster, ensuring that the inner products in (6) decay to zero
extremely quickly [17]. Finally, as we will see below, many constructions of φm(t) often involve a
degree of randomness that could also be leveraged to show that with high probability, the inner
products in (6) decay even faster. However, since the details will depend greatly on the particular
architecture used, we leave such an investigation for future work.

Having argued that the measurement model in (2) can often be expressed in the form (1), we
now turn to the central theoretical question of this paper:

Supposing that x(t) obeys the multiband model described in Section 4.1, how can we
recover x, i.e., the Nyquist-rate samples of x(t) on [0, Tw), from compressive measure-
ments of the form y = Ax+ e?

In order to answer this question, of course, we will need a dictionary Ψ that provides a suitably
sparse representation for x. We devote Section 4 to constructing such a dictionary. In addition to
a dictionary Ψ, however, we will also need a reconstruction algorithm that can efficiently recover
x from the compressive measurements y. While it is certainly possible to apply out-of-the-box CS
recovery algorithms to this problem, there are certain properties of our dictionary that make the
recovery problem worthy of further consideration. (In particular, the columns of our dictionary
Ψ will typically not be orthogonal, and the sparse coefficient vectors α that arise will tend to
have structured (block-sparse) sparsity patterns.) In light of these nuances, Section 3 now provides
additional background on CS that will allow us to formulate a principled recovery technique.

3 Compressive Sensing Background

3.1 Sensing matrix design

Setting aside the question of how to design the sparsity-inducing dictionary Ψ, we first address
the problem of designing A. Although many favorable properties for sensing matrices have been
studied in the context of CS, the most common is the restricted isometry property (RIP) [14]. We
say that the matrix AΨ satisfies the RIP of order S if there exists a constant δS ∈ (0, 1) such that

√
1− δS ≤

‖AΨα‖2
‖α‖2

≤
√

1 + δS (8)
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holds for all α such that ‖α‖0 ≤ S. In words, AΨ preserves the norm of S-sparse vectors. Note
that for any pair of vectors α and α′ such that ‖α‖0 = ‖α′‖0 = S, we have that ‖α−α′‖0 ≤ 2S.
This gives us an alternative interpretation of (8)—namely that the RIP of order 2S ensures that
AΨ preserves Euclidean distances between S-sparse vectors α.

A related concept is what we call the Ψ-RIP (following the notation in [12]). Specifically, we
say that the matrix A satisfies the Ψ-RIP of order S if there exists a constant δS ∈ (0, 1) such that

√
1− δS ≤

‖AΨα‖2
‖Ψα‖2

≤
√

1 + δS (9)

holds for all α such that ‖α‖0 ≤ S. When Ψ is an orthonormal basis, (8) and (9) are equivalent.
However, we will be concerned in this paper with non-orthogonal (and even non-square) dictionar-
ies Ψ, in which case the RIP and the Ψ-RIP are slightly different concepts: the former ensures
norm preservation of all sparse coefficient vectors α, while the latter ensures norm preservation
of all signals having a sparse representation x = Ψα. In many problems (such as when Ψ is an
overcomplete dictionary), the RIP is considered to be a stronger requirement.

There are a variety of approaches to constructing matrices that satisfy the RIP or Ψ-RIP, some
of which are better suited to practical architectures than others. From a theoretical standpoint,
however, the most fruitful approaches involve the use of random matrices. Specifically, we consider
matrices constructed as follows: given M and N , we generate a random M × N matrix A by
choosing the entries A[m,n] as independent and identically distributed (i.i.d.) random variables.
While it is not strictly necessary, for the sake of simplicity we will consider only real-valued random
variables, so that A ∈ RM×N .

We impose two conditions on the random distribution. First, we require that the distribution
is centered and normalized such that E(A[m,n]) = 0 and E(A[m,n]2) = 1

M . Second, we require
that the distribution is subgaussian [9, 75], meaning that there exists a constant c0 > 0 such that

E
(
eA[m,n]t

)
≤ ec20t2 (10)

for all t ∈ R. Examples of subgaussian distributions include the Gaussian distribution, the
Rademacher distribution, and the uniform distribution. In general, any distribution with bounded
support is subgaussian.

The key property of subgaussian random variables that will be of use in this paper is that for
any x ∈ CN , the random variable ‖Ax‖22 is highly concentrated about ‖x‖22. In particular, there
exists a constant c1(η) > 0 that depends only on η and the constant c0 in (10) such that

P
[∣∣∣‖Ax‖22 − ‖x‖22

∣∣∣ ≥ η ‖x‖22
]
≤ 4e−c1(η)M , (11)

where the probability is taken over all draws of the matrix A (see Lemma 6.1 of [26] or [18]).3

We leave the constant c1(η) undefined since it will depend both on the particular subgaussian
distribution under consideration and on the range of η considered. Importantly, however, for any
subgaussian distribution and any ηmax, we can write c1(η) = κη2 for η ≤ ηmax with κ being a
constant that depends on certain properties of the distribution [18]. This concentration bound has

3The concentration result in (11) is typically stated for x ∈ RN instead of CN . The complex case follows from the
real case by handling the real and imaginary parts separately and then applying the union bound, which results in a
factor of 4 instead of 2 in front of the exponent.
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a number of important consequences. Perhaps most important for our purposes is the following
lemma (an adaptation of Lemma 5.1 in [4]).4

Lemma 3.1. Let X denote any S-dimensional subspace of CN . Fix δ, β ∈ (0, 1). Let A be an
M ×N random matrix with i.i.d. entries chosen from a distribution satisfying (11). If

M ≥ 2S log(42/δ) + log(4/β)

c1(δ/
√

2)
(12)

then with probability exceeding 1− β,
√

1− δ ‖x‖2 ≤ ‖Ax‖2 ≤
√

1 + δ ‖x‖2 (13)

for all x ∈ X .

When Ψ is an orthonormal basis, one can use this lemma to go beyond a single S-dimensional
subspace to instead consider all possible subspaces spanned by S columns of Ψ, thereby establishing
the RIP for AΨ. The proof follows that of Theorem 5.2 of [4].

Lemma 3.2. Let Ψ be an orthonormal basis for CN and fix δ, β ∈ (0, 1). Let A be an M × N
random matrix with i.i.d. entries chosen from a distribution satisfying (11). If

M ≥ 2S log(42eN/δS) + log(4/β)

c1(δ/
√

2)
(14)

with e denoting the base of the natural logarithm, then with probability exceeding 1 − β, AΨ will
satisfy the RIP of order S with constant δ.

Proof. This is a simple generalization of Lemma 3.1, which follows from the observation that (8) is
equivalent to (13) holding for all S-dimensional subspaces. There are

(
N
S

)
≤ (eN/S)S subspaces of

dimension S aligned with the coordinate axes of Ψ, and so applying a union bound to Lemma 3.1
we obtain the desired result.

From essentially the same argument, we can also prove for more general dictionaries Ψ that A
will satisfy the Ψ-RIP.

Corollary 3.1. Let Ψ be an arbitrary N × D matrix and fix δ, β ∈ (0, 1). Let A be an M × N
random matrix with i.i.d. entries chosen from a distribution satisfying (11). If

M ≥ 2S log(42eD/δS) + log(4/β)

c1(δ/
√

2)
(15)

with e denoting the base of the natural logarithm, then with probability exceeding 1 − β, A will
satisfy the Ψ-RIP of order S with constant δ.

As noted above, the random matrix approach is somewhat impractical to build in hardware.
However, several hardware architectures have been implemented and/or proposed that enable com-
pressive samples to be acquired in practical settings. Examples include the random demodula-
tor [72], random filtering [73], the modulated wideband converter [47], random convolution [1, 56],
and the compressive multiplexer [61]. In this paper we will rely on random matrices in the de-
velopment of our theory, but we will see via simulations that the techniques we propose are also
applicable to systems that use some of these more practical architectures.

4The constants in [4] differ from those in Lemma 3.1, but the proof is substantially the same (see [20]). Note that
in [20] X is a subspace of RN rather than CN . In our case we incur an additional factor of 2 in the constant which
arises as a consequence of the increase in the covering number for a sphere in CS (which can easily be derived from
the fact that there is an isometry between CS and R2S).
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3.2 CS recovery algorithms

3.2.1 Greedy and iterative algorithms

Before we return to the problem of designing Ψ, we first discuss the question of how to recover the
vector x from measurements of the form y = Ax+e = AΨα+e. The original CS theory proposed
`1-minimization as a recovery technique [10, 27]. Convex optimization techniques are powerful
methods for CS signal recovery, but there also exist a variety of alternative greedy or iterative
algorithms that are commonly used in practice and that satisfy similar performance guarantees,
including iterative hard thresholding (IHT) [6], orthogonal matching pursuit (OMP) [23, 25, 53, 71],
and several more recent variations on OMP [15, 16, 28, 49–51].

In this paper we will restrict our attention to two of the most commonly used algorithms in
practice—IHT and CoSaMP [6, 49]. We begin with IHT, which is probably the simplest of all CS
recovery algorithms. As is the case for most iterative recovery algorithms, a core component of
IHT is hard thresholding. Specifically, we define the operator

hard(α, S)[n] =

{
α[n], |α[n]| is among the S largest elements of |α|;
0, otherwise.

(16)

In words, the hard thresholding operator sets all but the S largest elements of a vector to zero
(with ties broken according to any arbitrary rule).

To the best of our knowledge, there are no existing papers that specifically discuss how to
implement IHT when Ψ is not an orthonormal basis. Nonetheless, we can envision two natural
(and reasonable) ways that the canonical IHT algorithm [6] can be extended to handle a general
dictionary. In the first of these variations, the algorithm would consist of iteratively applying the
update rule

α`+1 = hard(α` + µ(AΨ)H(y −AΨα`), S) (17)

where µ is a parameter set by the user. In the second of these variations, the algorithm would
consist of iteratively applying the update rule

x`+1 = Ψ · hard
(
ΨH

(
x` + µAH

(
y −Ax`

))
, S
)
. (18)

When Ψ is an orthonormal basis these algorithms are equivalent, but in general they are not.
On the whole, IHT is a remarkably simple algorithm, but in practice its performance is greatly
dependent on careful selection and adaptation of the parameter µ. We refer the reader to [6] for
further details.

CoSaMP is a somewhat more complicated algorithm, but can be easily understood as breaking
the recovery problem into two separate sub-problems: identifying the S columns of Ψ that best
represent x and then projecting onto that subspace. The former problem is clearly somewhat
challenging, but once solved, the latter is relatively straightforward. In particular, if we have
identified the optimal columns of Ψ, indexed by the set Λ, then we can recover x via least-squares.
In this case, an optimal recovery strategy is to solve the problem:

x̂ = arg min
z

‖y −Az‖2 s.t. z ∈ R(ΨΛ), (19)

where ΨΛ denotes the submatrix of Ψ that contains only the columns of Ψ corresponding to the
index set Λ and R(ΨΛ) denotes the range of ΨΛ. If we let Ã = AΨ, then one way to obtain the

solution to (19) is via the pseudoinverse of ÃΛ, denoted Ã
†
Λ. Specifically, we can compute

α̂|Λ = Ã
†
Λy =

(
Ã
H

Λ ÃΛ

)−1
Ã
H

Λ y and α̂|Λc = 0 (20)
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Algorithm 1 Compressive Sampling Matching Pursuit (CoSaMP)

input: A, Ψ, y, S, stopping criterion
initialize: r0 = y, x0 = 0, ` = 0
while not converged do

proxy: h` = AHr`

identify: Ω`+1 = supp(hard(ΨHh`, 2S))

merge: Λ`+1 = supp(ΨHx`) ∪ Ω`+1

update: x̃ = arg minz ‖y −Az‖2 s.t. z ∈ R(ΨΛ`+1)

x`+1 = Ψ · hard(ΨH x̃, S)
r`+1 = y −Ax`+1

` = `+ 1
end while
output: x̂ = x`

and then set x̂ = Ψα̂. While this is certainly not the only approach to solving (19) (as we will see in
Section 6.1.2), it allows us to easily observe that in the noise-free setting, if the support estimate Λ
is correct, then y = Ax = ÃΛα|Λ, and so plugging this into (20) yields α̂ = α (and hence x̂ = x)
provided that ÃΛ has full column rank. Thus, the central challenge in recovery is to correctly
identify the set Λ. CoSaMP and related algorithms solve this problem by iteratively identifying
likely columns, performing a projection, and then improving the estimate of which columns to use.

Unfortunately, we are again not aware of any papers that specifically discuss how to implement
CoSaMP when Ψ is not an orthonormal basis. Nonetheless, we can envision two natural extensions
of the canonical CoSaMP algorithm [49]. One of these is shown in Algorithm 1;5 in a sense, this
formulation is more analogous to (18) than to (17) because it is focused on recovery of x rather
than α. However, Algorithm 1 is actually quite flexible and can be invoked in multiple ways. To
help distinguish among the different possibilities, it will be helpful to introduce the notation

x̂ = CoSaMP(A,Ψ,y, S)

to denote the output produced by Algorithm 1 when the arguments (A,Ψ,y, S) are provided as
input. Having set this notation, it is also reasonable to consider invoking Algorithm 1 with the
input arguments (AΨ, I,y, S). This formulation is more analogous to (17). In this case we will
denote the output by α̂ = CoSaMP(AΨ, I,y, S) since the algorithm will construct and output an
estimate of α (rather than x).

3.2.2 “Model-based” recovery algorithms

Traditional approaches to CS signal recovery, like those described above, place no prior assumptions
on supp(α). Sparsity on its own implies nothing about the locations of the nonzeros, and hence most
approaches to CS signal recovery treat every possible support as equally likely. However, in many
practical applications the nonzeros are not distributed completely at random, but rather exhibit a

5We note that the choice of 2S in the “identify” step is primarily driven by the proof technique, and is not intended
to be interpreted as an optimal or necessary choice. For example, in [16] it is shown that the choice of S is sufficient
to establish performance guarantees similar to those for CoSaMP. It is also important to note that when the number
of measurements M is very small (less than 3S) it is necessary to make suitable modifications as the assumptions of
the algorithm are clearly violated in this case. Moreover, a simple extension of CoSaMP as presented here involves
including an additional orthogonalization step after pruning x̃ down to an S-dimensional estimate, as is also done
in [16]. This can often result in modest performance gains and is a technique that we exploit in our simulations.
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degree of structure. In the case of signals exhibiting such structured sparsity, it is possible to both
reduce the required number of measurements and develop specialized “model-based” algorithms for
recovery that exploit this structure [3, 5].

In this paper, we are interested in the model of block-sparsity [3, 30]. In a block-sparse vector
α, the nonzero coefficients cluster in a small number of blocks. Specifically, suppose that x = Ψα
with Ψ being an N ×D matrix and that we decompose Ψ into J submatrices of size N × D

J , i.e.,

Ψ = [Ψ0 Ψ1 · · · ΨJ−1] .

Then we can write x =
∑J−1

i=0 Ψiαi, where each αi ∈ CD/J . We say that α is K-block-sparse if
there exists a set I ⊆ {0, 1, . . . , J − 1} such that |I| = K and αi = 0 for all i /∈ I. With some
abuse of notation, we now let let ΨI denote the submatrix of Ψ that contains only the columns of
Ψ corresponding to the blocks indexed by I.

We first illustrate how we can exploit block-sparsity algorithmically. Our goal is to generalize
IHT and CoSaMP to the block-sparse setting. To do this, we observe that the hard thresholding
function plays a key role in both algorithms. One way to interpret this role is that hard(ΨHx, S)
is actually computing a projection of ΨHx onto the set of S-sparse vectors. In the case where Ψ is
an orthonormal basis we can also interpret Ψ ·hard(ΨHx, S) as projecting x onto the set of signals
that are S-sparse with respect to the basis Ψ.

In the block-sparse case we must replace hard thresholding with an appropriate operator that
takes a candidate signal and finds the closest K-block-sparse approximation. Towards this end, we
define

SΨ(x,K) := arg min
|I|≤K

min
z∈R(ΨI)

‖x− z‖2 . (21)

SΨ(x,K) is analogous to the support of α in the traditional sparse setting: it tells us which set of
K blocks of Ψ can best approximate x. Along with SΨ(x,K), we also define

PΨ(x,K) := arg min
z

‖x− z‖2 s.t. z ∈ R
(
ΨSΨ(x,K)

)
. (22)

PΨ is simply the projection of the vector x ∈ CN onto the set of K-block-sparse signals. To simplify
our notation, we will often write S(α,K) = SΨ(α,K) and P(x,K) = PΨ(x,K) when Ψ is clear
from the context.

For each of the IHT and CoSaMP algorithms proposed in Section 3.2.1, it is possible to propose
a variation of the algorithm designed to exploit block-sparsity simply by replacing the hard thresh-
olding operator with an appropriate block-sparse projection. For example, one block-based version
of IHT (which is also a special case of the iterative projection algorithm in [5]), would consist of
replacing the core iteration of IHT in (18) with

x`+1 = P(x` + µAH(y −Ax`),K). (23)

Note that the only difference from (18) is that we have replaced hard thresholding with the pro-
jection onto the set of block-sparse signals. Similarly, a block-based version of CoSaMP is shown
in Algorithm 2.

Algorithm 2 is in differing senses both a special case and a generalization of the model-based
CoSaMP algorithm proposed in [3]. Specifically, in [3] an algorithm for block-sparse signal recovery
is proposed that is equivalent to Algorithm 2 when Ψ = I. The more general case of arbitrary Ψ is
not discussed. However, there are alternative options for handling Ψ 6= I besides the one specified
in Algorithm 2. Like Algorithm 1, Algorithm 2 is quite flexible and can be invoked in multiple
ways. Following our convention in Section 3.2.1, we use the notation x̂ = BBCoSaMP(A,Ψ,y,K)
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Algorithm 2 Block-Based CoSaMP (BBCoSaMP)

input: A, Ψ, y, K, stopping criterion
initialize: r0 = y, x0 = 0, ` = 0
while not converged do

proxy: h` = AHr`

identify: Ĩ`+1 = S(P(h`, 2K), 2K)

merge: I`+1 = S(x`,K) ∪ Ĩ`+1

update: x̃ = arg minz ‖y −Az‖2 s.t. z ∈ R(ΨI`+1)
x`+1 = P(x̃,K)
r`+1 = y −Ax`+1

` = `+ 1
end while
output: x̂ = x`

to denote the output produced by Algorithm 2 when the arguments (A,Ψ,y,K) are provided as
input, and we use the notation α̂ = BBCoSaMP(AΨ, I,y,K) to denote the output produced by
Algorithm 2 when the arguments (AΨ, I,y,K) are provided as input.

3.2.3 “Model-based” recovery guarantees

Theoretical guarantees for standard CS recovery algorithms typically rely on the RIP, and since in
the standard case any S-sparse signal is possible, there is little room for improvement. However,
the block-sparse model actually rules out a large number of possible signal supports, and so we
no longer require the full RIP or Ψ-RIP, i.e., we no longer need (8) or (9) to hold for all possible
S-sparse signals. Instead we only require that (8) or (9) hold for all α which are K-block-sparse.
We will refer to these relaxed properties as the block-RIP and Ψ-block-RIP respectively.

The relaxation to block-sparse signals allows us to potentially dramatically reduce the required
number of measurements. Specifically, note that a K-block-sparse vector α satisfies ‖α‖0 ≤ KD

J .

In the standard sparsity model we would have that the number of possible subspaces is
(
D
S

)
with

S = KD
J , whereas now the number of possible subspaces is given by

(
J
K

)
, which can be potentially

much smaller. Establishing (8) or (9) for a more general union of subspaces is a problem that has
received some attention in the CS literature [7, 31, 44]. In our context it should be clear that we
can simply apply Lemma 3.1 just as in the proofs of Lemma 3.2 and Corollary 3.1 to obtain the
following improved bounds.

Corollary 3.2. Let Ψ be an orthonormal basis for CN and fix δ, β ∈ (0, 1). Let A be an M ×N
random matrix with i.i.d. entries chosen from a distribution satisfying (11). If

M ≥ 2K
(
N
J log(42/δ) + log(eJ/K)

)
+ log(4/β)

c1(δ/
√

2)
(24)

with e denoting the base of the natural logarithm, then with probability exceeding 1 − β, AΨ will
satisfy the block-RIP of order K with constant δ.

Corollary 3.3. Let Ψ be an arbitrary N × D matrix and fix δ, β ∈ (0, 1). Let A be an M × N
random matrix with i.i.d. entries chosen from a distribution satisfying (11). If

M ≥ 2K
(
D
J log(42/δ) + log(eJ/K)

)
+ log(4/β)

c1(δ/
√

2)
(25)
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with e denoting the base of the natural logarithm, then with probability exceeding 1 − β, A will
satisfy the Ψ-block-RIP of order K with constant δ.

The measurement requirements in (24) and (25) represent improvements over (14) or (15) in
that a straightforward application of (14) or (15) would lead to replacing the log(eJ/K) term above
with N

J log(eJ/K) or D
J log(eJ/K) respectively.

We can combine these corollaries with the following theorems to show that we can stably
recover block-sparse signals using fewer measurements. Note that the following theorems are sim-
plified guarantees for the case of only approximately block-sparse signals. Both theorems can be
generalized to block-compressible signals,6 but we restrict our attention to the guarantees for sparse
signals to simplify discussion.

Theorem 3.1 (Theorem 2 from [5]). Suppose that x can be written as x = Ψα where α is K-
block-sparse and that we observe y = AΨα + e = Ax + e. If A satisfies the Ψ-block-RIP of
order 2K with constant δ2K ≤ 0.2 and 1

µ ∈ [1 + δ2K , 1.5(1− δ2K)), then the estimate obtained from
block-based IHT (23) satisfies

‖x− x̂‖2 ≤ κ1 ‖e‖2 (26)

where κ1 > 1 is a constant determined by δ2K and the stopping criterion.

Theorem 3.2 (Theorem 6 from [3]). Suppose that α is K-block-sparse and that we observe y =
AΨα+ e. If AΨ satisfies the block-RIP of order 4K with constant δ4K ≤ 0.1, then the output of
block-based CoSaMP (Algorithm 2) with α̂ = BBCoSaMP(AΨ, I,y,K) satisfies

‖α− α̂‖2 ≤ κ2 ‖e‖2 (27)

where κ2 > 1 is a constant determined by δ4K and the stopping criterion.

Theorems 3.1 and 3.2 show that measurement noise has a controlled impact on the amount
of noise in the reconstruction. However, note that Theorems 3.1 and 3.2 are fundamentally dif-
ferent from one another when the matrix Ψ is not an orthonormal basis. Theorem 3.2 requires
the assumption that AΨ satisfies the block-RIP while Theorem 3.1 requires that A satisfies the
Ψ-block-RIP. Theorem 3.2 also provides a different guarantee (recovery of α) compared to Theo-
rem 3.1 (which guarantees recovery of x). In the case where Ψ is an orthonormal basis, we could
immediately set x̂ = Ψα̂ so that the recovery guarantee in (27) applies to the error in x as well.
However, for arbitrary dictionaries Ψ this equivalence no longer holds.7 We conjecture that were
we to instead consider x̂ = BBCoSaMP(A,Ψ,y,K) we should be able to establish a theorem for
block-based CoSaMP analogous to Theorem 3.1, but we leave such an analysis for future work.

In Section 4 we develop a multiband modulated DPSS dictionary Ψ designed to offer high-
quality block-sparse representations for sampled multiband signals. Using this dictionary we estab-
lish block-RIP and Ψ-block-RIP guarantees in Section 5, which allows us to translate Theorems 3.1
and 3.2 into guarantees for recovery of sampled multiband signals from compressive measurements.
When we then turn to implement these algorithms, however, it is important to note that, although
we can implement the BBCoSaMP(AΨ, I,y,K) version of block-based CoSaMP with no trouble,

6By block-compressible, we mean signals that are well approximated by a block-sparse signal. The guarantee on
the recovery error for compressible signals is similar to those in Theorems 3.1 and 3.2 but includes an additional
additive component that quantifies the error incurred by approximating α with a block-sparse signal. If a signal is
close to being block-sparse, then this error is negligible, but if a signal is not block-sparse at all, then this error can
potentially be large.

7It is also worth noting that in the context of traditional (as opposed to model-based) CS, there do exist guarantees
on ‖x̂− x‖2 for general Ψ when using an alternative optimization-based approach combined with the Ψ-RIP [12].
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there is an important caveat to the results for block-based IHT and the BBCoSaMP(A,Ψ,y,K)
version of block-based CoSaMP. Specifically, both of those latter algorithms require that we be able
to compute P(x,K) as defined in (22). Unfortunately, because our dictionary Ψ is not orthonor-
mal we are aware of no algorithms that are guaranteed to solve this problem. However, we will
see empirically in Section 6 that we can attempt to solve this problem by applying many of the
same algorithms commonly used for CS recovery. In other words, we can perfectly implement an
algorithm (BBCoSaMP(AΨ, I,y,K)) that has a provable guarantee on the recovery of α, and we
can approximately implement algorithms (block-based IHT and BBCoSaMP(A,Ψ,y,K)) that are
intended to accurately recover x. We have implemented both variations of block-based CoSaMP,
and while both perform well in practice, the empirical performance of BBCoSaMP(A,Ψ,y,K)
turns out to be superior. In Section 6 we present a suite of simulations demonstrating the re-
markable effectiveness of BBCoSaMP(A,Ψ,y,K) (when combined with the multiband modulated
DPSS dictionary) in recovering sampled multiband signals from compressive measurements.

4 A Sparse Dictionary for Sampled Multiband Signals

4.1 Analog signal models

We now confront the problem of designing a dictionary Ψ in which x, a length-N vector of Nyquist-
rate samples of x(t), will be sparse or compressible. This is typically a significant challenge to
anyone applying CS techniques to analog signals, since many natural analog signal models cannot
be obviously represented via a simple basis Ψ. We now describe two of the most appealing analog
signal models and discuss the degree to which these models can fit within the CS framework.

4.1.1 Multitone signals

There are a variety of possibilities for quantifying the notion of sparsity in a continuous-time signal
x(t). Perhaps the simplest, dating back at least to the work of Prony [55], is the multitone model.
At its simplest, it assumes that x(t) can be expressed as

x(t) =

S∑

k=0

αke
j2πfkt, (28)

i.e., x(t) is simply a weighted combination of S complex exponentials of arbitrary frequencies. A
related model is given by

x(t) =

N−1∑

n=0

α[n]ej2πnt/NTs , (29)

where ‖α‖0 = S. This model is considered in [72], which provided one of the first extensions of
the CS framework to the case of continuous-time signals. The advantage of this model is that (29)
implies that x = Ψα, where x is the vector of discrete-time samples of x(t) on [0, Tw) and Ψ is the
non-normalized N ×N DFT matrix. Thus, the model (29) immediately fits into the standard CS
framework when the vector of coefficients α is sparse.

In practice, however, this approach is inadequate for two main reasons. First, the model in (29)
assumes that any tones in the signal have a frequency that lies exactly on the so-called Nyquist-
grid, i.e., the tones are bounded harmonics. When dealing with tones of arbitrary frequencies, the
corresponding “DFT leakage” results in α that are not sparse and are not even well-approximated
as sparse. In this case it can be useful to either incorporate a smooth windowing function into
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the measurement system, as in [72], or to consider the less restrictive model in (28), as in [29].
However, these approaches do not address the second main objection, which is that many (if not
most) real-world signals are not mere combinations of a few pure tones. For a variety of reasons, it
is typically more realistic to assume that each of the S signal components has some non-negligible
bandwidth, which leads us to instead consider the following extension of the multitone model.

4.1.2 Multiband signals

For the remainder of this paper, we will focus on multiband signals, or signals whose Fourier
transform is concentrated on a small number of continuous intervals or bands. Towards this end,
for a general continuous-time signal x(t), we define F(x) as the support of X(F ), i.e., F(x) = {F ∈
R : X(F ) 6= 0}. We will be interested in signals for which we can decompose F = F(x) into a
union of K continuous intervals, so that we can write

F ⊆
K⋃

i=1

[ai, bi].

In the most general setting, we would allow the endpoints of each interval to be arbitrary but subject
to a restriction on the total Lebesgue measure of their union. See, for example, [8, 33, 34, 74]. In
this paper we restrict ourselves to a simpler model. Specifically, we divide the range of possible
frequencies from −Bnyq

2 to
Bnyq

2 into J =
Bnyq

Bband
equal bands of width Bband and require X(F ) to be

supported on at most K of these bands. An example is illustrated in Figure 1. More formally, we
define the ith band as

∆i =

[
−Bnyq

2
+ iBband,−

Bnyq

2
+ (i+ 1)Bband

]
.

We then define

Γ(K,Bband) =

{
F : F ⊆

⋃

i∈I
∆i for some I ⊆ {0, 1, . . . , J − 1} with |I| ≤ K

}

as the set of all possible supports. Using this, we define

M(K,Bband) =
{
x(t) : F(x) ⊆ F ′ for some F ′ ∈ Γ(K,Bband)

}
(30)

as the set of multiband signals. Note that the total occupied bandwidth is at most KBband. Our
interest is in the setting where KBband � Bnyq, so that if we knew a priori where the K bands
were located, we could acquire x(t) in a streaming setting with only KBband samples per second.
(This is the so-called Landau rate [40].) Our goal is to acquire finite windows of multiband signals
without such a priori knowledge while keeping the measurement rate as close as possible to the
Landau rate.

Note, however, that the setM(K,Bband) is defined for infinite-length signals x(t). Indeed, any
signal with a Fourier transform supported on a finite range of frequencies cannot also be supported
on a finite range of time. This would seem to be somewhat at odds with the finite-dimensional CS
framework described above. As a result, previous efforts aimed at sampling multiband signals have
developed largely outside the framework of CS [8, 33, 34, 46, 47, 74]. It is our goal in this paper to
show that it is possible to recover a finite-length window of samples of a multiband signal using
many of the standard tools from CS. To do this, we will need to construct an appropriate dictionary
Ψ for capturing the structure of this set, which we do in the following section.
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Figure 1: Illustration showing the CTFT of a multiband signal where J =
Bnyq

Bband
= 10 and K = 3.

Finally, we also note that while our signal model breaks up the spectrum into J =
Bnyq

Bband
bands

with fixed boundaries and bandwidth, it actually encompasses the broader class of signals where
the bandwidth and center frequency of each band is arbitrary. For example, a signal with K bands
of width Bband but with arbitrary center frequencies will automatically lie within M(2K,Bband).
Since we are primarily interested in the case where KBband � Bnyq, this factor of 2 will not be
significant in the development of our theoretical results. However, we do note that in practice it
may be possible to achieve a significant gain by exploiting a more flexible signal model.

In the remainder of this section we demonstrate that it is possible to construct discrete-time
bases using Discrete Prolate Spheroidal Sequences (DPSS’s) that efficiently capture the structure
of sampled multiband signals. We first review DPSS’s and their key properties as first developed
in [64], and we then discuss some of the consequences of these properties in terms of their utility
in representing sampled continuous-time signals. Ultimately, we demonstrate how to use DPSS’s
to construct a dictionary Ψ which sparsely represents windows of sampled multiband signals.

4.2 Discrete Prolate Spheroidal Sequences (DPSS’s)

Our goal in this subsection is to provide a self-contained review of the concepts from Slepian’s
work on DPSS’s [64] that are most relevant to the problem of modeling sampled multiband signals.
We refer the reader to [41, 42, 62–66] for more complete overviews of DPSS’s, PSWF’s, and their
implications in time-frequency localization.

4.2.1 DPSS’s

Let N be an integer, and let 0 < W < 1
2 . Given N and W , the DPSS’s are a collection of N

discrete-time sequences that are strictly bandlimited to the digital frequency range |f | ≤ W yet
highly concentrated in time to the index range n = 0, 1, . . . , N − 1. The DPSS’s are defined to
be the eigenvectors of a two-step procedure in which one first time-limits the sequence and then
bandlimits the sequence. Before we can state a more formal definition, let us note that for a given
discrete-time signal x[n], we let

X(f) =

∞∑

n=−∞
x[n]e−j2πfn
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denote the discrete-time Fourier transform (DTFT) of x[n].8 Next, we let BW denote an operator
that takes a discrete-time signal, bandlimits its DTFT to the frequency range |f | ≤ W , and
returns the corresponding signal in the time domain. Additionally, we let TN denote an operator
that takes an infinite-length discrete-time signal and zeros out all entries outside the index range
{0, 1, . . . , N − 1} (but still returns an infinite-length signal). With these definitions, the DPSS’s
are defined as follows.

Definition 4.1. [64] Given N and W , the Discrete Prolate Spheroidal Sequences (DPSS’s) are

a collection of N real-valued discrete-time sequences s
(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W that, along with the

corresponding scalar eigenvalues

1 > λ
(0)
N,W > λ

(1)
N,W > · · · > λ

(N−1)
N,W > 0,

satisfy

BW (TN (s
(`)
N,W )) = λ

(`)
N,W s

(`)
N,W (31)

for all ` ∈ {0, 1, . . . , N − 1}. The DPSS’s are normalized so that

‖TN (s
(`)
N,W )‖2 = 1 (32)

for all ` ∈ {0, 1, . . . , N − 1}.

As we discuss in more detail below in Section 4.2.4, the eigenvalues λ
(0)
N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W

have a very distinctive behavior: the first 2NW eigenvalues tend to cluster extremely close to 1,
while the remaining eigenvalues tend to cluster similarly close to 0.

Before proceeding, let us briefly mention several key properties of the DPSS’s that will be useful
in our subsequent analysis. First, it is clear from (31) that the DPSS’s are, by definition, strictly
bandlimited to the digital frequency range |f | ≤ W . Second, the DPSS’s are also approximately
time-limited to the index range n = 0, 1, . . . , N − 1. Specifically, it can be shown that [64]

‖s(`)
N,W ‖2 =

1√
λ

(`)
N,W

. (33)

Comparing (32) with (33), we see that for values of ` where λ
(`)
N,W ≈ 1, nearly all of the energy in

s
(`)
N,W is contained in the interval {0, 1, . . . , N − 1}. Third, the DPSS’s are orthogonal over Z [64],

i.e., for any `, `′ ∈ {0, 1, . . . , N − 1} with ` 6= `′, 〈s(`)
N,W , s

(`′)
N,W 〉 = 0.

4.2.2 Time-limited DPSS’s

While each DPSS actually has infinite support in time, several very useful properties hold for the
collection of signals one obtains by time-limiting the DPSS’s to the index range n = 0, 1, . . . , N −1.

First, the time-limited DPSS’s TN (s
(0)
N,W ), TN (s

(1)
N,W ), . . . , TN (s

(N−1)
N,W ) are approximately bandlimited

to the digital frequency range |f | ≤W . Specifically, from (31) and (33), one can deduce that

‖BW (TN (s
(`)
N,W ))‖2 =

√
λ

(`)
N,W . (34)

8Note that we use lower-case f to indicate the digital frequency (so that X(f) represents the DTFT of a discrete-
time sequence x[n], while X(F ) represents the CTFT of a continuous-time signal x(t)).
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Figure 2: Illustration of four example DPSS’s time-limited to the interval [0, 1, . . . , N−1] and the magnitude
of their DTFT’s. In this example, N = 1024 and W = 1

4 . Note that when ` < 2NW − 1 the energy of the
spectrum is highly concentrated on the interval [−W,W ] and when ` > 2NW −1 the energy of the spectrum
is concentrated almost entirely outside the interval [−W,W ].

Comparing (32) with (34), we see that for values of ` where λ
(`)
N,W ≈ 1, nearly all of the energy

in TN (s
(`)
N,W ) is contained in the frequencies |f | ≤ W . An illustration of four representative time-

limited DPSS’s and their DTFT’s is provided in Figure 2. While by construction the DTFT of
any DPSS is perfectly bandlimited, the DTFT of the corresponding time-limited DPSS will only be
concentrated in the bandwidth of interest for the first 2NW DPSS’s. As a result, we will frequently
be primarily interested in roughly the first 2NW DPSS’s.

Second, the time-limited DPSS’s are also orthogonal [64] so that for any `, `′ ∈ {0, 1, . . . , N −1}
with ` 6= `′,

〈TN (s
(`)
N,W ), TN (s

(`′)
N,W )〉 = 0. (35)

Finally, like the DPSS’s, the time-limited DPSS’s have a special eigenvalue relationship with the
time-limiting and bandlimiting operators. In particular, if we apply the operator TN to both sides

of (31), we see that the sequences TN (s
(n)
N,W ) are actually eigenfunctions of the two-step procedure

in which one first bandlimits a sequence and then time-limits the sequence.

4.2.3 DPSS vectors

Because our focus in this paper is primarily on representing and reconstructing finite-length vectors,
we will find the following restriction of the time-limited DPSS’s to be useful, where we restrict the
domain exclusively to the index range n = 0, 1, . . . , N − 1 (discarding the zeros outside this range).

Definition 4.2. Given N and W , the DPSS vectors s
(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W ∈ RN are defined by

restricting the time-limited DPSS’s to the index range n = 0, 1, . . . , N − 1:

s
(`)
N,W [n] := TN (s

(`)
N,W )[n] = s

(`)
N,W [n]

for all `, n ∈ {0, 1, . . . , N − 1}.
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Figure 3: Eigenvalue concentration for N = 1024 and W = 1
4 . Note that the first 2NW = 512 eigenvalues

cluster near 1 and the remaining eigenvalues rapidly approach the level of machine precision.

Following from our discussion in Section 4.2.2, the DPSS vectors obey several favorable prop-
erties. First, combining (32) and (35), it follows that the DPSS vectors form an orthonormal basis
for CN (or for RN ). However, as we discuss in subsequent sections, bases constructed using just
the first ≈ 2NW DPSS vectors can be remarkably effective for capturing the energy in our signals
of interest. Second, if we define BN,W to be the N ×N matrix with entries given by

BN,W [m,n] := 2W sinc (2W (m− n)) , (36)

we see that the eigenvectors of BN,W are given by the DPSS vectors s
(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W , and

the corresponding eigenvalues are λ
(0)
N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W [64]. Thus, if we concatenate the DPSS

vectors into an N ×N matrix

SN,W :=
[
s

(0)
N,W s

(1)
N,W · · · s(N−1)

N,W

]
∈ RN×N , (37)

and let ΛN,W denote an N×N diagonal matrix with the DPSS eigenvalues λ
(0)
N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W

along the main diagonal, then we can write the eigendecomposition of BN,W as

BN,W = SN,WΛN,WS
H
N,W . (38)

This decomposition will prove useful in our analysis below.

4.2.4 Eigenvalue concentration

As mentioned above, the eigenvalues λ
(0)
N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W have a very distinctive and important

behavior: the first 2NW eigenvalues tend to cluster extremely close to 1, while the remaining
eigenvalues tend to cluster similarly close to 0. This behavior—which will allow us to construct
efficient bases using small numbers of DPSS vectors—is illustrated in Figure 3 and captured more
formally in the following results.

Lemma 4.1 (Eigenvalues that cluster near one [64]). Suppose that W is fixed, and let ε ∈ (0, 1)
be fixed. Then there exist constants C1, C2 (where C2 may depend on W and ε) and an integer N0

(which may also depend on W and ε) such that

λ
(`)
N,W ≥ 1− C1e

−C2N for all ` ≤ 2NW (1− ε) and all N ≥ N0. (39)
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Lemma 4.2 (Eigenvalues that cluster near zero [64]). Suppose that W is fixed, and let ε ∈ (0, 1
2W −

1) be fixed. Then there exist constants C3, C4 (where C4 may depend on W and ε) and an integer
N1 (which may also depend on W and ε) such that

λ
(`)
N,W ≤ C3e

−C4N for all ` ≥ 2NW (1 + ε) and all N ≥ N1. (40)

Alternatively, suppose that W is fixed, and let α > 0 be fixed. Then there exist constants C5, C6

and an integer N2 (where N2 may depend on W and α) such that

λ
(`)
N,W ≤ C5e

−C6α for all ` ≥ 2NW + α log(N) and all N ≥ N2.

On occasion, we will have a need to compute bounds on sums of the eigenvalues. First, we note
the following.

Lemma 4.3.
N−1∑

`=0

λ
(`)
N,W = trace(BN,W ) = 2NW. (41)

The following results will also prove useful.

Corollary 4.1. Suppose that W is fixed, let ε ∈ (0, 1), and let k = 2NW (1− ε). Then for N ≥ N0,

N−1∑

`=k

λ
(`)
N,W ≤ 2NW (ε+ C1e

−C2N ),

where C1, C2, and N0 are as specified in Lemma 4.1.

Proof. It follows from (39) and (41) that

N−1∑

`=k

λ
(`)
N,W = 2NW −

k−1∑

`=0

λ
(`)
N,W

≤ 2NW − 2NW (1− ε)
(
1− C1e

−C2N
)

= 2NW
(
1− (1− ε)

(
1− C1e

−C2N
))

= 2NW
(
ε+ C1e

−C2N − εC1e
−C2N

)

≤ 2NW
(
ε+ C1e

−C2N
)

(42)

for N ≥ N0.

Corollary 4.2. Suppose that W is fixed, let ε ∈ (0, 1
2W − 1), and let k = 2NW (1 + ε). Then for

for N ≥ max(N0, N1),

N−1∑

`=k

λ
(`)
N,W ≤ 2NW min

(
ε+ C1e

−C2N ,
C3

2W
e−C4N

)
, (43)

where C1, C2, C3, C4, N0, and N1 are as specified in Lemma 4.1 and Lemma 4.2.

Proof. This result follows simply from Corollary 4.1 and from (40).
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4.3 DPSS bases for sampled bandpass signals

Using the DPSS vectors, it is possible to construct remarkably efficient bases for representing
the discrete-time vectors that arise when collecting finite numbers of samples from most multiband
signals (e.g., signals inM(K,Bband)). Before presenting our full construction, however, we illustrate
the basic concepts using sampled bandpass signals (e.g., signals in M(1, Bband)).

4.3.1 A bandpass modulated DPSS basis

For the moment, we restrict our attention to vectors of samples acquired from a continuous-time
bandpass signal x(t). We assume that F(x), the support of X(F ), is restricted to some interval
[Fc − Bband

2 , Fc + Bband
2 ], where the center frequency Fc and width Bband are known. We define

x = [x(0) x(Ts) · · · x((N − 1)Ts)]
T as in Section 3 to be a finite-length vector of N samples of x(t)

collected uniformly with a sampling interval Ts ≤ 1/(2 max{|Fc ± Bband
2 |}).

As a basis for efficiently representing many such vectors x, we propose the following. First, let
W = BbandTs

2 , and as in (37), let SN,W denote the N ×N matrix containing the N DPSS vectors
(constructed with parameters N and W ) as columns. Next, define fc = FcTs and let Efc denote
an N ×N diagonal matrix with entries

Efc [m,n] :=

{
ej2πfcm, m = n,
0, m 6= n.

(44)

Multiplying a vector by Efc simply modulates that vector by a frequency fc. Finally, consider the
N×N matrix EfcSN,W , whose columns are given by the DPSS vectors, each modulated by fc. One
can easily check that EfcSN,W forms an orthonormal basis for CN , since (EfcSN,W )HEfcSN,W =
(SN,W )H(Efc)

HEfcSN,W = (SN,W )HSN,W = I. For a given integer k ∈ {1, 2, . . . , N}, we let

[EfcSN,W ]k

denote the N ×k matrix formed by taking the first k columns of EfcSN,W . We will see that taking
[EfcSN,W ]k with k ≈ 2NW forms an efficient basis that, to a high degree of accuracy, captures
most sample vectors x that can arise from sampling bandpass signals.

4.3.2 Approximation quality for sampled complex exponentials

To best illustrate one of our key points regarding the approximation of bandpass signals, let us first
restrict our focus to the simplest possible bandpass signals: pure complex exponentials. Specifically,
consider a continuous-time signal of the form x(t) = ej2πFt where the frequency F belongs to the
interval [Fc − Bband

2 , Fc + Bband
2 ]. We define x = [x(0) x(Ts) · · · x((N − 1)Ts)]

T , fc = FcTs, and

W = BbandTs
2 as in Section 4.3.1. Also, defining

ef :=




ej2πf0

ej2πf

...

ej2πf(N−1)




for all f ∈ [fc −W, fc +W ], we note that the sample vector x will equal ef for f = FTs. Without
knowing the exact carrier frequency F in advance, we ask whether it is possible to define an efficient
low-dimensional basis for capturing the energy in any sample vector x that could arise in this model.
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At first glance, this problem may appear difficult or impossible. The infinite set of possible
sample vectors {ef}f∈[fc−W,fc+W ] traverses a 1-dimensional manifold (parameterized by f) within

CN . Technically speaking, these vectors collectively span all of CN . What is remarkable, however,
is that to a high degree of accuracy, these vectors are approximately concentrated along a very
low-dimensional subspace of CN . Moreover, for any k ∈ {1, 2, . . . , N}, it is possible to analytically
find the best k-dimensional subspace that minimizes the average squared distance from the vectors
ef to the subspace, and this subspace is spanned by the first k modulated DPSS vectors.

To see this, we letQ denote a subspace of CN and PQ denote the orthogonal projection operator
onto Q. We would like to minimize

1

Bband
·
∫ Fc+

Bband
2

Fc−
Bband

2

‖eFTs − PQeFTs‖22 dF =
1

2W
·
∫ fc+W

fc−W
‖ef − PQef‖22 df (45)

over all subspaces Q of some prescribed dimension k. As we show below in Theorem 4.1, this
minimization problem can be solved by relating it to the Karhunen-Loeve (KL) transform.9 For the
benefit of the reader, we briefly review the relevant concepts from the KL transform in Appendix A.

Theorem 4.1. For any k with k ∈ {1, 2, . . . , N}, the k-dimensional subspace which minimizes (45)
is spanned by the columns of Q = [EfcSN,W ]k, i.e., by the first k DPSS vectors modulated to center
frequency fc. Furthermore, with this choice of Q, we will have

1

2W
·
∫ fc+W

fc−W
‖ef − PQef‖22 df =

1

2W

N−1∑

`=k

λ
(`)
N,W .

For a point of comparison, each sampled sinusoid has energy ‖ef‖22 = N .

Proof. See Appendix B.

Recall that the first ≈ 2NW DPSS eigenvalues are very close to 1 and the rest are small, so we
are guaranteed a high degree of approximation to the sampled sinusoids if we choose k ≈ 2NW .
In particular, if we choose k = 2NW (1− ε), it follows from Corollary 4.1 that

1

2W

N−1∑

`=k

λ
(`)
N,W ≤ N(ε+ C1e

−C2N )

for N ≥ N0. Alternatively, if we choose k = 2NW (1 + ε), it follows from Corollary 4.2 that

1

2W

N−1∑

`=k

λ
(`)
N,W ≤ N min

(
ε+ C1e

−C2N ,
C3

2W
e−C4N

)

for N ≥ max(N0, N1). Since each sampled sinusoid has energy ‖ef‖22 = N , for the subspace we have
chosen (say with k = 2NW (1 − ε)), the average relative approximation error across the sampled
sinusoids is bounded by a small fraction ε+ C1e

−C2N of the energy of a given sinusoid.
It is important to note that, while we are guaranteed a very high degree of approximation

accuracy in an MSE sense, we are not guaranteed such accuracy uniformly over all sampled sinusoids
in our band of interest. A relatively small number of sinusoids may have higher values of ‖ef −
PQef‖22, and in practice this diminished approximation performance tends to occur for those
sinusoids with frequencies near the edge of the band (i.e., for f near fc ±W ).

9The observation that a connection exists between DPSS’s and the KL transform is not a new one (see, for
example, [32, 38, 48, 57]).
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Figure 4: DPSS bases efficiently capture the energy in sampled complex exponentials. (a) SNR captured
from three sampled complex exponentials (with differing frequencies f) as a function of the number k of
DPSS basis elements. (b) SNR captured as a function of f for four fixed values of k. In both plots, N = 1024
and W = 1

4 .

This behavior is illustrated in Figure 4. In Figure 4(a) we consider three possible frequencies
(f = 0, 1

8 , or 1
4) and show the ability of the baseband DPSS basis (with fc = 0 and W = 1

4) to
capture the energy in these sinusoids as a function of how many DPSS vectors are added to the
basis. The ability of a basis to capture a given signal is quantified through

SNR = 20 log10

( ‖ef‖2
‖ef − PQef‖2

)
dB.

Overall, we observe broadly similar behavior for each frequency in that by adding slightly more
than 2NW DPSS vectors to our basis, we capture essentially all of the energy in the original signal.
However, we do observe slightly different behavior for the sinusoid with a frequency exactly at W .
In this case we capture very little of the energy in the signal until we have added more than 2NW
vectors, while for lower frequencies we begin to do well before this point.

To illustrate this phenomenon, Figure 4(b) considers four different sizes for the DPSS basis and
shows the SNR as a function of the frequency of the sinusoid. In the cases where k = 500 < 2NW
and k = 2NW we see somewhat similar behavior—we are capturing a good fraction, but not all, of
any sinusoid whose frequency is not too close to W . We see a dramatic difference when we increase
k slightly to 560, at which point we are capturing virtually all of the energy in any sinusoid within
the band of interest. However, this eventually has a potentially problematic side-effect, as we can
see by further increasing k to 700. Specifically, as we continue to increase the size of the DPSS basis
we begin to capture energy of sinusoids that lie outside the targeted band as well. This tradeoff will
play an important role in the selection of the appropriate k in the algorithms we propose below.

4.3.3 Approximation quality for sampled bandpass signals

The above analysis shows that sampled sinusoids, on average, are well approximated by modulated
DPSS bases. This is a strong indication that such bases might also be useful for approximating
more general sampled bandpass signals, since the vectors {ef}f∈[fc−W,fc+W ] ⊂ CN themselves act as

“building blocks” for representing sampled, bandpass signals in CN . Formally, for any continuous-
time bandpass signal x(t) with frequency content restricted to the interval [Fc− Bband

2 , Fc + Bband
2 ],
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one can show that for each n ∈ {0, 1, . . . , N − 1},

x[n] := x(nTs) =

∫ Fc+
Bband

2

Fc−
Bband

2

X(F )ej2πFnTs dF =

∫ fc+W

fc−W
X(f)ef [n] df,

where we recall that X(F ) denotes the CTFT of x(t) and X(f) denotes the DTFT of x[n]. So,
informally, x can be expressed as a linear combination of (infinitely many) sampled complex expo-
nentials ef , where f ranges from fc −W to fc +W .

Our analysis from Section 4.3.2 allows us to show that in a certain sense, most continuous-time
bandpass signals, when sampled and time-limited, are well-approximated by the modulated DPSS
basis. In particular, the following result establishes that bandpass random processes, when sampled
and time-limited, are in expectation well-approximated.

Theorem 4.2. Let x(t) denote a continuous-time, zero-mean, wide sense stationary random process
with power spectrum

Px(F ) =

{
1

Bband
, F ∈ [Fc − Bband

2 , Fc + Bband
2 ],

0, otherwise,

and let x = [x(0) x(Ts) · · · x((N − 1)Ts)]
T ∈ CN denote a finite vector of samples acquired from

x(t) with a sampling interval Ts ≤ 1/(2 max{|Fc± Bband
2 |}). Then over all k-dimensional subspaces

of CN , x is best approximated (in an MSE sense) by the subspace spanned by the columns of
Q = [EfcSN,W ]k, where fc = FcTs and W = BbandTs

2 . The corresponding MSE is given by

E
[
‖x− PQx‖22

]
=

1

2W

N−1∑

`=k

λ
(`)
N,W , (46)

while E
[
‖x‖22

]
= N .

Proof. See Appendix C.

As in our discussion following Theorem 4.1, we can ensure that the MSE in (46) is small
compared to E

[
‖x‖22

]
by choosing k ≈ 2NW . This suggests that in a probabilistic sense, most

bandpass signals, when sampled and time-limited, will be well approximated by a small number of
modulated DPSS vectors. Again, however, we are not guaranteed such accuracy uniformly over all
sampled bandpass signals in our band of interest. A relatively small number of bandpass signals x(t)
could lead to sample vectors x with higher values of ‖x−PQx‖22. In particular, recalling that the
baseband DPSS’s are themselves strictly bandlimited, it follows that there exist strictly bandpass
signals that when sampled and time-limited yield the modulated DPSS vectors. If we restrict Q to

the first k columns of EfcSN,W , then any bandpass signal producing a sample vector x = Efcs
(`)
N,W

with ` ≥ k will have PQx = 0 and ‖x− PQx‖22 = ‖x‖22. Fortunately, Theorem 4.2 confirms that
such bandpass signals are relatively uncommon: at the risk of belaboring this important point,
most bandpass signals, when sampled and time-limited, produce sample vectors approximately in
the span of just the first k ≈ 2NW modulated DPSS vectors.

On a related note, signal processing engineers often have a sense for how much “spectral leakage”
to anticipate when collecting a finite window of samples of a continuous-time signal. (Frequently,
this leakage is reduced via a smooth windowing function [45].) Such practitioners can rest assured
that, in every case where the spectral leakage is small outside a bandpass range of frequencies, the
resulting sample vector can be well approximated by a small number of modulated DPSS vectors.
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Theorem 4.3. Let x[n] = TN (x[n]) be a time-limited sequence, and suppose that x[n] is approxi-
mately bandlimited to the frequency range f ∈ [fc −W, fc +W ] such that for some δ,

‖Bfc,Wx‖22 ≥ (1− δ)‖x‖22,

where Bfc,W denotes an orthogonal projection operator that takes a discrete-time signal, bandlimits
its DTFT to the frequency range f ∈ [fc −W, fc + W ], and returns the corresponding signal in
the time domain. Let x ∈ CN denote the vector formed by restricting x[n] to the indices n =
0, 1, . . . , N − 1. Set k = 2NW (1 + ε) and let Q = [EfcSN,W ]k. Then for N ≥ N1,

‖x− PQx‖22 ≤ (δ +NC3e
−C4N )‖x‖22, (47)

where C3, C4, and N1 are as specified in Lemma 4.2.

Proof. See Appendix D.

Note that, in contrast to Theorem 4.2, Theorem 4.3 requires k to be slightly larger than 2NW .

4.4 DPSS dictionaries for sampled multiband signals

4.4.1 A multiband modulated DPSS dictionary

In order to construct an efficient dictionary for sampled multiband signals, we propose simply to
concatenate an ensemble of modulated DPSS bases, each one modulated to the center of a band in
our model. In particular, in light of the multiband signal model discussed in Section 4.1.2, where
the bandwidth [−Bnyq

2 ,
Bnyq

2 ] is partitioned into bands ∆i of size Bband, let us define the midpoint
of ∆i as

Fi = −Bnyq

2
+

(
i+

1

2

)
Bband, i ∈ {0, 1, . . . , J − 1},

where J =
Bnyq

Bband
. Let W = BbandTs

2 (we assume a sampling interval Ts ≤ 1
Bnyq

), and for each i, let
fi = FiTs and define

Ψi = [EfiSN,W ]k (48)

for some value of k that we can choose as desired. We construct the multiband modulated DPSS
dictionary Ψ by concatenating all of the Ψi:

Ψ = [Ψ0 Ψ1 · · · ΨJ−1] . (49)

The matrix Ψ will have size N × kJ (note that if k = 2NW and Ts = 1
Bnyq

, Ψ will be square).

4.4.2 Approximation quality for sampled multiband signals

In a probabilistic sense, most multiband signals, when sampled and time-limited, will be well ap-
proximated by a small number of vectors from the multiband modulated DPSS dictionary. In
particular, there exists a block-sparse approximation for such sample vectors using only the modu-
lated DPSS vectors corresponding to the active signal bands.

Theorem 4.4. Let I ⊆ {0, 1, . . . , J − 1} with |I| = K. Suppose that for each i ∈ I, xi(t) is a
continuous-time, zero-mean, wide sense stationary random process with power spectrum

Pxi(F ) =

{ 1
KBband

, F ∈ ∆i,

0, otherwise,
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and furthermore suppose the {xi}i∈I are independent and jointly wide sense stationary. Let x(t) =∑
i∈I xi(t), and let x = [x(0) x(Ts) · · · x((N − 1)Ts)]

T ∈ CN denote a finite vector of samples
acquired from x(t) with a sampling interval of Ts ≤ 1

Bnyq
. Let ΨI denote the concatenation of the

Ψi over all i ∈ I, where the Ψi are as defined in (48). Then

E
[
‖x− PΨIx‖22

]
≤ K

2W

N−1∑

`=k

λ
(`)
N,W , (50)

whereas E
[
‖x‖22

]
= N .

Proof. See Appendix E.

Theorem 4.4 confirms the existence of a high-quality block-sparse approximation for most sam-
pled multiband signals; in particular, the signal approximation vector specified in (50) can be writ-

ten as PΨIx = Ψα for a K-block-sparse coefficient vector α given by α|I = Ψ†Ix and α|Ic = 0.
As in our previous discussions for bandpass signals, we can ensure the MSE in (50) is small com-
pared to E

[
‖x‖22

]
by choosing k ≈ 2NW . Compared to previous analysis, however, the MSE

appearing in Theorem 4.4 is larger by a factor of K (though this quantity may still be quite small).
Although it may be possible to improve upon this figure, the reader should keep in mind that the
multiband modulated DPSS dictionary is not necessarily the optimal basis for representing sampled
multiband signals with a given sparsity pattern I; it is merely a generic (and easily computable)
dictionary that provides highly accurate approximations for most multiband signals having any
possible sparsity pattern.

Although we omit the details here, one could also consider generalizing Theorem 4.3 to multi-
band signals that have small spectral leakage when windowed in time.

5 Recovering Sampled Multiband Signals from Random Measure-
ments

In this section, we proceed to develop theoretical guarantees for signal recovery using the multiband
modulated DPSS dictionary Ψ as defined in (49). Throughout our theoretical discussion and the
subsequent experiments, we pay special attention to the role played the number k of DPSS vectors
per band. We begin in Section 5.1 with a collection of RIP guarantees, and we extend these to
signal recovery guarantees in Section 5.2. Throughout this section and the remainder of the paper,
we assume that Ts ≤ 1

Bnyq
.

5.1 Embedding guarantees

We can actually immediately establish Ψ-RIP and Ψ-block-RIP guarantees for any value of k. The
theorem below follows as a direct consequence of Corollaries 3.1 and 3.3.

Theorem 5.1. Let k ∈ {1, 2, . . . , N}, set D = kJ =
kBnyq

Bband
, and let Ψ be the N × D multiband

modulated DPSS dictionary defined in (49). The following statements hold:

1. Fix δ, β ∈ (0, 1), and let A be an M × N subgaussian matrix with M satisfying (15). Then
with probability exceeding 1− β, A satisfies the Ψ-RIP of order S with constant δ.

2. Fix δ, β ∈ (0, 1), and let A be an M × N subgaussian matrix with M satisfying (25). Then
with probability exceeding 1− β, A satisfies the Ψ-block-RIP of order K with constant δ.
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In order to establish RIP and block-RIP bounds forAΨ, however, we must restrict our attention
to values of k that are not too large (this ensures the matrix Ψ is not overcomplete). To be specific,
we note that for any k, the columns of Ψ have unit norm. In addition, when k is suitably small,
the columns of Ψ are approximately orthogonal.

Lemma 5.1. Let k = 2NW (1− ε), set D = kJ = N(1− ε)BnyqTs < N , and let Ψ be the N ×D
multiband modulated DPSS dictionary defined in (49). Then for any pair of distinct columns q1,
q2 in Ψ,

|〈q1, q2〉| ≤ 3C
1/2
1 e−

C2N
2 (51)

if N ≥ N0, where C1, C2, and N0 are as specified in Lemma 4.1.

Proof. See Appendix F.

Using this fact, we can ensure that whenever k = 2NW (1− ε), Ψ must act as an approximate
isometry between any coefficient vector α ∈ CD and the corresponding signal vector x = Ψα ∈ CN .

Lemma 5.2. Let k = 2NW (1− ε), set D = kJ = N(1− ε)BnyqTs < N , and let Ψ be the N ×D
multiband modulated DPSS dictionary defined in (49). Then

√
1− 3NC

1/2
1 e−

C2N
2 ≤ ‖Ψα‖2‖α‖2

≤
√

1 + 3NC
1/2
1 e−

C2N
2 (52)

for all α ∈ CD.

Proof. The sharpest possible lower and upper bounds in (52) are given by the smallest and
largest singular values of Ψ, respectively. Using standard results from linear algebra, σmin(Ψ) =√
λmin(ΨHΨ) and σmax(Ψ) =

√
λmax(ΨHΨ). The Gram matrix ΨHΨ has size D×D. All entries

on the main diagonal of ΨHΨ are equal to 1, and all entries off of the main diagonal can be bounded
using (51). From the Geršgorin circle theorem [35], it follows that all eigenvalues of ΨHΨ must

fall in the interval [1− 3DC
1/2
1 e−

C2N
2 , 1 + 3DC

1/2
1 e−

C2N
2 ], which for simplicity we note is contained

within the interval [1− 3NC
1/2
1 e−

C2N
2 , 1 + 3NC

1/2
1 e−

C2N
2 ] since by assumption D < N .

Lemma 5.2 is the key fact we need to establish RIP and block-RIP bounds for AΨ.

Theorem 5.2. Let k = 2NW (1− ε), set D = kJ = N(1− ε)BnyqTs < N , and let Ψ be the N ×D
multiband modulated DPSS dictionary defined in (49). The following statements hold:

1. If A satisfies the Ψ-RIP of order S with constant δ, then AΨ satisfies the RIP of order S

with constant δ + 6NC
1/2
1 e−

C2N
2 .

2. If A satisfies the Ψ-block-RIP of order K with constant δ, then AΨ satisfies the block-RIP

of order K with constant δ + 6NC
1/2
1 e−

C2N
2 .

Proof. For any α ∈ CD such that (9) holds, we can use (52) to conclude that

√
1− δ ·

√
1− 3NC

1/2
1 e−

C2N
2 ≤ ‖AΨα‖2

‖α‖2
≤
√

1 + δ ·
√

1 + 3NC
1/2
1 e−

C2N
2 .

For the upper bound, note that

(1 + δ)
(

1 + 3NC
1/2
1 e−

C2N
2

)
= 1 + δ + 3NC

1/2
1 e−

C2N
2 + δ3NC

1/2
1 e−

C2N
2

≤ 1 + δ + 6NC
1/2
1 e−

C2N
2 ,

where the second line follows from the assumption that δ < 1. The lower bound follows similarly.
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5.2 Recovery guarantees

In this section we prove that with a sufficient number of measurements and an appropriately
constructed multiband modulated DPSS dictionary, most sample vectors of multiband signals can
be accurately reconstructed. Our proof of this fact relies on two principles.

5.2.1 Recovery of exactly block-sparse signals

The first of these principles is that, as a consequence of our RIP results in Section 5.1, signal
vectors having representations that are exactly K-block-sparse in the dictionary Ψ can be accu-
rately reconstructed from compressive samples. The following two results follow from combining
Theorems 3.1, 3.2, 5.1, and 5.2.

Theorem 5.3. Let k ∈ {1, 2, . . . , N}, set D = kJ =
kBnyq

Bband
, and let Ψ be the N × D multiband

modulated DPSS dictionary defined in (49). Fix δ ∈ (0, 0.2) and β ∈ (0, 1), and let A be an M ×N
subgaussian matrix with

M ≥ 4K
(
D
J log(42/δ) + log(eJ/2K)

)
+ log(4/β)

c1(δ/
√

2)
. (53)

Then with probability exceeding 1 − β, the following statement holds: For any x′ ∈ CN that has a
K-block-sparse representation in the dictionary Ψ (i.e., that can be written as x′ = Ψα′ for some
K-block-sparse vector α′ ∈ CD), if we use block-based IHT (23) with 1

µ ∈ [1 + δ, 1.5(1 − δ)) to

recover an estimate x̂ of x′ from the observations y = Ax′ + e, the resulting x̂ will satisfy

∥∥x′ − x̂
∥∥

2
≤ κ1 ‖e‖2 , (54)

where κ1 > 1 is as specified in Theorem 3.1.

Theorem 5.4. Let k = 2NW (1 − ε), set D = kJ = N(1 − ε)BnyqTs < N , and let Ψ be the

N ×D multiband modulated DPSS dictionary defined in (49). Fix δ ∈ (0, 0.1− 6NC
1/2
1 e−

C2N
2 ) and

β ∈ (0, 1). Let A be an M ×N subgaussian matrix with

M ≥ 8K
(
D
J log(42/δ) + log(eJ/4K)

)
+ log(4/β)

c1(δ/
√

2)
(55)

Then with probability exceeding 1 − β, the following statement holds: For any x′ ∈ CN that has
a K-block-sparse representation in the dictionary Ψ (i.e., that can be written as x′ = Ψα′ for
some K-block-sparse vector α′ ∈ CD), if we use block-based CoSaMP (Algorithm 2) with α̂ =
BBCoSaMP(AΨ, I,y,K) to recover an estimate α̂ of α′ from the observations y = Ax′ + e, the
resulting α̂ will satisfy ∥∥α′ − α̂

∥∥
2
≤ κ2 ‖e‖2 (56)

where κ2 > 1 is as specified in Theorem 3.2.

5.2.2 Approximating sampled multiband signals with exactly block-sparse signals

The second of our principles is that most multiband signals with K occupied bands, when sampled
and time-limited, have a high-quality K-block-sparse representation in the dictionary Ψ. Let
x(t) denote a continuous-time multiband signal with nonzero support on blocks indexed by I ⊆
{0, 1, . . . , J − 1}, where |I| = K. Let x = [x(0) x(Ts) · · · x((N − 1)Ts)]

T ∈ CN denote a finite
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vector of samples acquired from x(t) with a sampling interval of Ts ≤ 1
Bnyq

. Let α′ be a K-

block-sparse coefficient vector given by α′|I = Ψ†Ix and α′|Ic = 0. Defining x′ := Ψα′ and
ex := x−Ψα′ = x− x′, we can then write

x = x′ + ex, (57)

where x′ has an exactly K-block-sparse representation in the dictionary Ψ and we expect ex to be
small.

We can more formally bound the size of ex. For example, under the multiband random process

model for x(t) described in Theorem 4.4, we will have E
[
‖ex‖22

]
≤ K

2W

∑N−1
`=k λ

(`)
N,W . By setting the

number of columns per band k to be on the order of 2NW , we can make this error small relative
to E

[
‖x‖22

]
= N . For example, if we take k = 2NW (1− ε) for some ε ∈ (0, 1), Corollary 4.1 allows

us to conclude that

E
[
‖ex‖22

]
≤ K

2W

N−1∑

`=k

λ
(`)
N,W ≤ KN(ε+ C1e

−C2N ). (58)

for N ≥ N0. The rightmost upper bound in (58) can be made as small as desired (relative to
E
[
‖x‖22

]
= N) by choosing ε sufficiently small and N sufficiently large.

For any value of k, we can also establish a tail bound on ‖ex‖22, guaranteeing that it is unlikely

to significantly exceed the quantity K
2W

∑N−1
`=k λ

(`)
N,W . Using standard concentration of measure

arguments for subgaussian and subexponential random variables (see [75] for a thorough discussion),
one can make the following guarantee on the squared norm of a Gaussian random vector.

Lemma 5.3. Let z ∈ CN be a complex-valued Gaussian random vector with mean zero. Then

P
[∣∣‖z‖22 − E

[
‖z‖22

]∣∣ ≥ γE
[
‖z‖22

]]
≤ 2 exp

{
−min

(
γ2(
∑

n λn)2

c2
2

∑
n λ

2
n

,
γ
∑

n λn
c2 maxn λn

)}
,

where c2 is a universal constant and {λn} denote the eigenvalues of the autocorrelation matrix of
the length-2N random vector [Re(z)T Im(z)T ]T .

If we assume in our multiband random process model that x(t) is a Gaussian random process,
this will imply that x is a Gaussian random vector, and since ex is a linear transformation of x, ex
will be Gaussian as well. This allows us to apply Lemma 5.3 to the quantity ‖ex‖22. Using the fact
that ‖λ‖1 ≥ ‖λ‖2 ≥ ‖λ‖∞ for any vector λ, we can pessimistically simplify this bound to read:

P

[
‖ex‖22 ≥ (1 + γ)

K

2W

N−1∑

`=k

λ
(`)
N,W

]
≤ 2 exp

{
−min

(
γ2

c2
2

,
γ

c2

)}
. (59)

5.2.3 Combined guarantees

To put these two principles together, we note that when taking noise-free compressive measurements
Ax of a signal vector x obeying (57), we will have Ax = Ax′ + Aex. This allows us to invoke
Theorems 5.3 and 5.4 with e := Aex,10 and when the number of columns per band k is chosen so
that we expect ex to be small, the concentration of measure phenomenon tells us that e should

10One could easily incorporate actual measurement noise into e as well (and thus extend Theorems 5.5 and 5.6 to
the case of noisy measurements). However, for the sake of clarity we simply set e := Aex in order to highlight the
impact of modeling error in our main results.
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be small as well. In particular, note that for fixed ex and random subgaussian A, (11) guarantees
that

P
[∣∣∣‖e‖22 − ‖ex‖22

∣∣∣ ≥ η ‖ex‖22
]
≤ 4e−c1(η)M . (60)

Then, for example, if we let let x̂ denote the estimated signal vector recovered via block-based IHT,
(60) allows us to write

‖x− x̂‖2 ≤ ‖x− x′‖2 + ‖x′ − x̂‖2 ≤ ‖ex‖2 + κ1 ‖e‖2 ≤ (1 + κ1(1 + η)1/2)‖ex‖2,

where the second inequality follows from Theorem 5.3 and the third inequality holds with probability
at least 1− 4e−c1(η)M . Combining this fact with the tail bound (59), we can establish the following
guarantee.

Theorem 5.5. Let k ∈ {1, 2, . . . , N}, set D = kJ =
kBnyq

Bband
, and let Ψ be the N × D multiband

modulated DPSS dictionary defined in (49). Fix δ ∈ (0, 0.2) and β ∈ (0, 1), and let A be an M ×N
subgaussian matrix with M satisfying (53). If x(t) is a Gaussian random process obeying the K-
band model described in Theorem 4.4, x ∈ CN is generated by sampling x(t) as in Theorem 4.4,
and we use block-based IHT (23) with 1

µ ∈ [1 + δ, 1.5(1 − δ)) to recover an estimate of x from the
observations y = Ax, then the resulting estimate x̂ will satisfy

‖x− x̂‖22 ≤ (1 + κ1(1 + η)1/2)2(1 + γ)
K

2W

N−1∑

`=k

λ
(`)
N,W (61)

with probability at least 1−β− 4e−c1(η)M − 2e−min(γ2/c22,γ/c2), where W = BbandTs
2 as specified in the

dictionary construction (49), κ1 > 1 is a constant as specified in Theorem 3.1, c1 is a constant as
specified in (11), and c2 is a universal constant.

Although the above result holds for any k ∈ {1, 2, . . . , N}, it is perhaps most interesting when
the number of columns per band k is chosen to be on the order of 2NW . For example, if we take
k = 2NW (1− ε), (61) will read

‖x− x̂‖22 ≤ (1 + κ1(1 + η)1/2)2(1 + γ)(ε+ C1e
−C2N )KN. (62)

Supposing that K, κ1, η, and γ are fixed, one can make the upper bound appearing in (62) as small
as desired (relative to E

[
‖x‖22

]
= N) by choosing ε sufficiently small and N sufficiently large.11

Specifically, the term ε + C1e
−C2N can be made arbitrarily close to zero by choosing ε sufficiently

small and N sufficiently large. Of course, as one increases the length N of the signal vector, the
requisite number M of measurements will increase proportionally (this is captured in (53) via the
dependence on D). What is important about the measurement bound is that M

N , the permitted
undersampling ratio relative to the Nyquist sampling rate (supposing Ts = 1

Bnyq
), will scale like

M

N
∼ KBband

Bnyq
.

In other words, we need only collect compressive samples at a rate proportional to KBband, the
total amount of occupied bandwidth (i.e., the so-called Landau rate [40]).

11One could also use Lemma 5.3 to guarantee that, with high probability, ‖x‖22 will not be too small compared to
N . We omit these details in the interest of conciseness.
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For sufficiently small k, we can establish a similar guarantee for block-based CoSaMP. Let α̂
be the recovered coefficient vector, and define x̂ := Ψα̂. Then we can write

‖x− x̂‖2 ≤ ‖x− x′‖2 + ‖Ψα′ −Ψα̂‖2

≤ ‖ex‖2 +

√
1 + 3NC

1/2
1 e−

C2N
2 ‖α′ − α̂‖2

≤ ‖ex‖2 + κ2

√
1 + 3NC

1/2
1 e−

C2N
2 ‖e‖2

≤ (1 + κ2(1 + 3NC
1/2
1 e−

C2N
2 )1/2(1 + η)1/2)‖ex‖2,

where the second line follows from Lemma 5.2, the third line follows from Theorem 5.4, and the
last line holds with probability at least 1− 4e−c1(η)M . Combining this fact with Corollary 4.1 and
the tail bound (59), we can establish the following guarantee.

Theorem 5.6. Let k = 2NW (1 − ε), set D = kJ = N(1 − ε)BnyqTs < N , and let Ψ be the

N × D multiband modulated DPSS dictionary defined in (49). Fix δ ∈ (0, 0.1 − 6NC
1/2
1 e−

C2N
2 )

and β ∈ (0, 1), and let A be an M × N subgaussian matrix with M satisfying (55). If x(t)
is a Gaussian random process obeying the K-band model described in Theorem 4.4, x ∈ CN is
generated by sampling x(t) as in Theorem 4.4, we use block-based CoSaMP (Algorithm 2) with
α̂ = BBCoSaMP(AΨ, I,y,K) to recover an estimate of α from the observations y = Ax, and we
set x̂ := Ψα̂, then the resulting estimate will satisfy

‖x− x̂‖22 ≤ (1 + κ2(1 + 3NC
1/2
1 e−

C2N
2 )1/2(1 + η)1/2)2(1 + γ)(ε+ C1e

−C2N )KN (63)

with probability at least 1−β−4e−c1(η)M −2e−min(γ2/c22,γ/c2), where κ2 > 1 is a constant as specified
in Theorem 3.2, C1 and C2 are constants as specified in Lemma 4.1, c1 is a constant as specified
in (11), and c2 is a universal constant.

Once again, supposing that K, κ2, η, and γ are fixed, one can make the upper bound appear-
ing in (63) as small as desired (relative to E

[
‖x‖22

]
= N) by choosing ε sufficiently small and N

sufficiently large. Specifically, the terms 3NC
1/2
1 e−

C2N
2 and ε + C1e

−C2N can be made arbitrarily
close to zero by choosing ε sufficiently small and N sufficiently large. Thus, we have again guaran-
teed that most finite-length sample vectors arising from multiband analog signals can—to a very
high degree of approximation—be recovered from a number of compressive measurements that is
proportional to the underlying information level.

6 Simulations

In this section we present the results of a suite of simulations that demonstrate the effectiveness of
our proposed approaches to multiband signal recovery from compressive measurements. In doing so,
we address various practical considerations that arise within our framework. All of our simulations
were performed via a MATLAB software package that we have made available for download at
http://www.mines.edu/~mwakin/software/. This software package contains all of the code and
results necessary to reproduce the experiments and figures described below, but should additionally
serve as a platform upon which other researchers can test and develop their own extensions of these
ideas.

6.1 Implementation and experimental setup

We begin with a brief discussion regarding our implementation and experimental setup.
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6.1.1 Computing P(x,K)

We first recall that a key step in solving either block-based IHT (specifically, the variation in (23)) or
block-based CoSaMP (specifically, the variation x̂ = BBCoSaMP(A,Ψ,y,K)) is the computation
of P(x,K), i.e., the projection of x onto the set of K-block sparse signals in the dictionary Ψ
(as defined in (22)). If Ψ were an orthonormal basis, this projection could be computed simply
by taking ΨHx and setting to zero all but the K blocks of this vector with the highest energy.
Unfortunately, the columns of the multiband modulated DPSS dictionary Ψ (as defined in (49))
are not orthogonal, and so this thresholding approach is not guaranteed to even approximate the
correct solution. In fact, when the number of columns per band k exceeds 2NW (1−ε), Ψ will fail to
act as an isometry (recall Lemma 5.2), and when k exceeds 2NW , Ψ will actually be overcomplete.
As we will see in our experiments, it can often be desirable to choose k to be larger than 2NW ,
but this lack of isometry and this overcompleteness prevent us from applying any of the standard
arguments from sparse approximation to solving the projection problem.

It is important to note that in (22) we are seeking a vector z that minimizes ‖x− z‖2 and has
a block-sparse representation in Ψ. Although z will be unique, the corresponding representation in
Ψ need not be unique if Ψ fails to satisfy the block-RIP. Unfortunately, there seems to be relatively
little known about solving this type of sparse approximation problem. Nevertheless, since we are
ultimately interested in z (not its representation with respect to Ψ) this should not necessarily
stop us from proceeding under the hope that standard sparse approximation algorithms can still
succeed even when Ψ is moderately overcomplete. Thus, in our simulations, we use block-OMP
to obtain an approximation to P(x,K). Block-OMP is a straightforward generalization of the
classical OMP algorithm. It proceeds by: (i) initializing the residual vector r = x and the set
I = ∅, (ii) computing the proxy vector h = ΨHr, (iii) identifying the block in h that has the
largest energy and adding this block to the set I, and (iv) orthogonalizing r against the columns
in ΨI . This last step is equivalent to the “update” step in CoSaMP in Algorithms 1 and 2. Steps
(ii) through (iv) are repeated until termination. The final output can be computed from x− rK ,
where rK is the residual after K iterations.

We close by noting that the lack of a provable technique for computing P(x,K) represents an
important gap between some of our theory and practice. Specifically, one of our main results (The-
orem 5.5) pertains to block-based IHT (23), but this is an algorithm that we can only implement
approximately. As noted at the end of Section 3.2.3, we conjecture that one could also establish
theoretical guarantees for the BBCoSaMP(A,Ψ,y,K) version of block-based CoSaMP, but this
too relies on being able to compute P(x,K) exactly. In light of this, we point out the following.
First, we are able to implement the BBCoSaMP(AΨ, I,y,K) version of block-based CoSaMP ex-
actly because this problem can be solved with simple block thresholding of the vector α, and one
of our main results (Theorem 5.6) does pertain specifically to BBCoSaMP(AΨ, I,y,K). Second,
our simulations in Sections 6.2 and beyond, which rely on block-OMP for approximating P(x,K),
indicate that we are clearly finding high quality solutions to this problem despite the lack of prov-
able guarantees. What is interesting is that our experimental results seem most favorable when k
exceeds 2NW by a nontrivial amount, and that is a regime where the dictionary Ψ is overcomplete.
We hope to further address the implications of overcomplete Ψ in future work.

6.1.2 Regularized least-squares

In our simulations below, we focus exclusively on testing the two versions of block-based CoSaMP.
One could conceivably expect similar experimental results using a properly-tuned version of block-
based IHT, but since we lack theory concerning P(x,K) we find it more worthwhile to devote
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our space to exploring the various practical issues surrounding block-based CoSaMP. Specifically,
let us note that when solving block-based CoSaMP, the key steps in this algorithm consist of
solving the least-squares problem in the “update” step and of computing P(x,K) (twice), which
also involves solving (potentially multiple) least-squares problems. Thus, it is crucial that we solve
these least-squares problems efficiently and accurately.

While there has been much work in the CS community on solving these problems efficiently
(for example, see [49]), we leave aside the issue of speed for the moment and focus instead on the
issue of stability. In our context, we must take some care in solving these problems, since when the
number of columns k per band becomes becomes much larger than 2NW , the matrices involved
can become potentially rank deficient and thus standard approaches can be numerically unstable.
Fortunately, this instability can be easily addressed using relatively simple techniques.

We first consider the least-squares problem that must be solved in the computation of P(x,K).
In this case we will not focus specifically on the block-OMP algorithm that we implement, but
simply assume that we have some technique for obtaining an estimate I of S(x,K). At that point,

solving (22) is relatively straightforward. One could solve this via P(x,K) = ΨIΨ
†
Ix, but when I

contains indices corresponding to adjacent bands, ΨI can be nearly rank deficient. In this case, a
better approach is to construct a reduced basis U for R(ΨI). One can then compute the projection
simply via P(x,K) = UUHx. In our context, we use this reduced basis approach to perform the
orthogonalization in each step of the block-OMP approach to computing P(x,K).

We now turn to the main least-squares problem in the “update” step of CoSaMP. In this step
we are given a set of blocks I and wish to solve a problem of the form

x̃ = arg min
z

‖y −Az‖2 s.t. z ∈ R(ΨI). (64)

Note that in this case we require more than simply the projection of y onto R(AΨI)—we wish to
actually calculate the vector z corresponding to this projection. This requires a different approach
than the simple reduced basis approach described above (although constructing a reduced basis
for R(ΨI) can still be useful in this context). In our simulations we regularize (64) via Tikhonov
regularization [54, 69, 70]. The key idea is to replace (64) with

x̃ = arg min
z

‖y −Az‖2 s.t. z ∈ R(ΨI), ‖z‖2 ≤ γ. (65)

The constraint ‖z‖2 ≤ γ significantly improves the conditioning of this problem when AΨI is
ill-conditioned. In our simulations below, we use the toolbox of [37] to efficiently solve (65). Note
also that in our setting, the parameter γ can be easily set using the norm of the original signal x
that we are acquiring. In all simulations below (using either variation of block-based CoSaMP),
we assume that an upper bound on ‖x‖2 is known. In practical settings such an upper bound will
usually be available, but if necessary one could also estimate this upper bound from ‖y‖2.

6.1.3 Experimental setup

In all of the experiments below, we assume that Ts = 1
Bnyq

and that there are J =
Bnyq

Bband
= 256

possible bands. For each value of k that we consider, we set D = kJ and let Ψ be the N × D
multiband modulated DPSS dictionary defined in (49). The digital half-bandwidth parameter W
is set to be W = BbandTs

2 = 1
512 , and we consider sample vectors with length N = 4096, so that

2NW = 16.
In our experiments we generate our sampled multiband signal vectors x by selecting the positions

of the K occupied bands uniformly at random from the J possibilities, and then within each
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band adding together 50 complex exponentials with frequencies selected uniformly at random from
within the frequency band (not aligned with the “Nyquist grid”). Each complex exponential in
this summation is given a random amplitude and phase via multiplication by a complex Gaussian
random variable. There are a variety of other possibilities for generating test signals which we
considered and for which we have observed essentially the same results as presented below.

We will typically report our results in terms of the SNR of the recovery, which in this context
is defined as

SNR = 20 log10

( ‖x‖2
‖x− x̂‖2

)
dB,

where x is the original input to the measurement matrix and x̂ is the recovered estimate of x
provided by CoSaMP. In all cases where we plot the SNR, what we actually show is the result of
50 independent trials (with a new signal for each trial). Rather than plotting the mean SNR, we
plot the contour for which 95% of trials result in an SNR at least as large as the level indicated (so
that only 5% of trials result in a worse performance than indicated in the curves below).

6.2 BBCoSaMP(A,Ψ,y, K) versus BBCoSaMP(AΨ, I,y, K)

We begin with a comparison between the two versions of block-based CoSaMP discussed in Sec-
tion 3.2—specifically, BBCoSaMP(A,Ψ,y,K) and BBCoSaMP(AΨ, I,y,K). Recall that the key
difference between these approaches is that the former essentially tries to recover x directly, while
the latter instead attempts to first recover α and then estimates x̂ as Ψα̂. Since less is known about
the theoretical properties of BBCoSaMP(A,Ψ,y,K) (both in and of itself and with respect to the
computation of P(x,K)), we have focused more on BBCoSaMP(AΨ, I,y,K) in our theoretical
development. However, all of our theorems regarding BBCoSaMP(AΨ, I,y,K) (e.g., Theorems 5.4
and 5.6) are limited to the case where the number k of DPSS vectors per band used to construct
the multiband modulated DPSS dictionary Ψ satisfies k < 2NW , and as we will see shortly, in
practice we obtain significant improvements in performance by considering k > 2NW .

In our experiments we evaluate both versions of block-based CoSaMP as a function of k. For
the purposes of this experiment, we assume that there are K = 5 active bands, we set the number
of measurements M = 512, and we construct the measurement matrix A to be M × N with
i.i.d. Gaussian entries with mean zero and variance 1

M . In this experiment, we take y = Ax
and do not add noise to the measurements. In Figure 5(a) we see that when k is small the
two approaches perform similarly, but when k exceeds 2NW by more than a small amount, the
performance of BBCoSaMP(A,Ψ,y,K) is far superior to that of BBCoSaMP(AΨ, I,y,K). In
fact, when k becomes large we observe that for at least 5% of trials BBCoSaMP(AΨ, I,y,K)
results in an SNR of almost 0dB (which can be achieved simply via the trivial estimate x̂ = 0.)
This gap is further illustrated in Figure 5(b), which shows the probability that the performance of
BBCoSaMP(AΨ, I,y,K) is within 3dB of BBCoSaMP(A,Ψ,y,K) as a function of k. This also
begins to rapidly decay when k exceeds 2NW . For a point of reference, in Figure 5(c) we plot the

eigenvalue λ
(k+1)
N,W corresponding to the first DPSS basis vector which is not used in constructing

our dictionary Ψ. This value is the dominant term in the approximation error that we can expect
when using Ψ to represent multiband signals. We see that BBCoSaMP(A,Ψ,y,K) continues to

improve with increasing k, roughly until λ
(k+1)
N,W approaches the level of machine precision.

Our experimental results suggest that in our analysis of BBCoSaMP(AΨ, I,y,K) we are correct
in requiring that k be relatively small, as the algorithm does indeed break down when k becomes
too large. However, before this breakdown the performance can be quite favorable, with recovery
SNR exceeding 88dB, and Theorem 5.6 does guarantee even better performance were N to increase.
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Figure 5: Comparison of BBCoSaMP(A,Ψ,y,K) to BBCoSaMP(AΨ, I,y,K). (a) The recovery SNR
of BBCoSaMP(A,Ψ,y,K) and BBCoSaMP(AΨ, I,y,K) as a function of the number k of DPSS vectors
used per band in constructing the multiband modulated DPSS dictionary Ψ. (b) The probability that
the performance of BBCoSaMP(AΨ, I,y,K) is within 3dB of BBCoSaMP(A,Ψ,y,K) as a function of k.
(c) The eigenvalue corresponding to the first DPSS basis vector that is not used.

We speculate that the breakdown in the performance of BBCoSaMP(AΨ, I,y,K) as k grows
is likely due to the fact that, for large enough k, the dictionary Ψ begins to contain highly coherent
columns, so that any method that attempts to recover α itself is likely to encounter significant
problems. However, the strong performance of BBCoSaMP(A,Ψ,y,K) (with no clear limitation
on the size of k) seems to suggest that this latter approach likely satisfies the kinds of guarantees
provided for block-based IHT in Theorems 5.3 and 5.5, which provide for arbitrarily large k and
hence arbitrarily accurate recovery. In light of these results, for the remainder of our experiments
we focus exclusively on BBCoSaMP(A,Ψ,y,K).

6.3 Impact of measurement noise

In most realistic scenarios, the compressive measurements y will be subject to various sources of
noise (including noise in the signal itself, noise within the sensing hardware, quantization, etc.) As
noted in Section 5.2.3, our approach to signal recovery inherits the same robustness to noise that is
exhibited by traditional CoSaMP. To illustrate this, we consider the case where the measurements
y are corrupted by additive white Gaussian noise,12 i.e., y = Ax + e where each e ∼ N (0, σ2I).
In our experiments we consider three different noise levels, quantified by the “measurement SNR”
(MSNR), which is defined as

MSNR = 20 log10

(‖Ax‖2
‖e‖2

)
dB,

In general, the theoretical guarantees for this scenario suggest that the SNR of the recovery should
be roughly comparable to the MSNR.

The results of our experiment are illustrated in Figure 6. In this case we are still assuming that
there are K = 5 active bands, we use an i.i.d. Gaussian matrix A with M = 512 rows, and we
plot the performance as a function of k. We observe that the results are essentially the same as
in Figure 5(a), but that as we increase k the recovery SNR will hit a plateau dictated by the best

12Note that the case where the signal is corrupted with white noise as opposed to the measurements can be reduced
to the case where the signal is noise-free and the measurements are noisy, and thus we restrict our attention to noisy
measurements. See [11, 21] for further discussion of this equivalence and the challenges posed by signal noise.
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Figure 6: Impact of measurement noise on the signal recovery SNR as a function of k.

possible SNR achievable for a given MSNR. Roughly speaking, when k is small, performance is being
limited by “modeling error”, but as k increases we eventually reach a regime where measurement
noise surpasses modeling error as the limiting factor, and no further gains are possible by increasing
k. Thus, in practice it will typically be the noise level that dictates the optimal choice in k. For
the remainder of our experiments we wish to avoid any assumptions about the noise level, and so
we restrict our attention to noise-free measurements. However, the results all translate to the noisy
setting roughly as one would expect based on these results.

6.4 Required measurement rate

We now study the performance our approach as a function of the number of measurements M .
Specifically, we consider the cases where K = 5, 10, and 15 bands are active, and for each value of
K we let M vary from 2NWK (the Landau rate) up to 14NWK (oversampling the Landau rate
by a factor of 7). The results are shown in Figures 7(a) and (b), which plot the results in terms of
M

2NWK and M , respectively. We observe that when the measurement rate is only 3 or 4 times that
of the Landau rate, we are already doing extremely well, and we obtain near-perfect recovery at 6
times the Landau rate. We observe very similar behavior for all values of K. Thus, for the sake
of simplicity, we restrict the remainder of our experiments to the case where there are only K = 5
active bands.

Before moving on, we note that an important caveat to these results is that as we vary M and
K, it is sometimes necessary to adjust the value of k used in the construction of Ψ. This can easily
be seen by considering the regime where the measurement rate is very close to the Landau rate.
Suppose M = 2NWK and that we knew a priori which bands were occupied. In this case we could
perform recovery using the appropriate submatrix of Ψ, which would have kK columns. Thus,
if k > 2NW , then we would have only M = 2NWK measurements and would need to estimate
kK > M values—a situation we would clearly like to avoid. Moreover, if we must also estimate
the support from the data as well, then it is clearly best to avoid setting k to be too large when M
is small. Thus, in the experiments for Figure 7 (and for those below) we set k based on a rule of
thumb that we determined based on empirical performance. Specifically, we set k = 2NW when
M

2NWK ≤ 2. For M
2NWK ∈ [2, 6], we linearly increase k from 2NW = 16 to, in our case k = 38

(which represents the rough point at which the first omitted eigenvalue λ
(k+1)
N,W reaches the level of

machine precision). For larger values of M there is no performance gain by considering k larger
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Figure 7: Recovery performance as a function of the number of measurements M for K = 5, 10, and 15
active bands. (a) Performance in terms of M

2NWK , which measures oversampling with respect to the Landau
rate. (b) Performance in terms of the actual number of measurements M .

than this level.

6.5 Alternative measurement architectures

As promised in Section 3.1, we now evaluate the performance of our approach using more practical
measurement schemes. We compare the performance achieved using an i.i.d. Gaussian matrix to
that achieved using an M×N random demodulator matrix [72] and to a random sampling approach
where M samples are taken uniformly at random on the length-N Nyquist grid. The results are
shown in Figure 8. We observe very similar performance among the three approaches, with the
Gaussian matrix performing best, then random demodulator, followed by random sampling. Note
that while there is certainly a gap between these three approaches, it is also most pronounced in
a regime which is likely irrelevant in practice, since it is rare to find applications where a recovery
SNR of 200dB or more is feasible.

6.6 Comparison with DFT-based approach

Finally, we close with a comparison between the performance achievable using our proposed multi-
band modulated DPSS dictionary Ψ and the performance achievable using the N × N DFT as a
sparsifying basis. We test both dictionaries using an M × N random demodulator measurement
matrix [72], which was originally designed with frequency-sparse signals in mind (but under a mul-
titone signal model, not a multiband model). Due to DFT leakage effects, we believe that it would
be inappropriate to break the DFT dictionary into bands and use a block block-based recovery
algorithm; thus when Ψ is the DFT basis, we use x̂ = CoSaMP(A,Ψ,y, S) as our recovered signal
estimate. In order to give the DFT approach the best possible chance for success, for each value
of M we consider a range of possible values for the sparsity parameter S, selecting the value of S
that achieves the best possible performance according to an oracle.

The performance gap between these two approaches—illustrated in Figure 9(a)—is monumental.
Using the DFT dictionary, we never achieve a recovery SNR better than 20dB over this range of mea-
surements, whereas using the multiband modulated DPSS dictionary with block-based CoSaMP,
the recovery SNR can exceed 200dB.
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Figure 8: Comparison of recovery SNR using i.i.d. Gaussian measurements, random demodulator measure-
ments, and random samples.

To illustrate the typical difference between these two approaches, in Figure 9(b) we show in
blue the DTFT of a representative signal from one trial in this experiment. Plotted in red is the
DTFT of the signal vector recovered using the DPSS dictionary with M

2NWK = 4; the recovery
SNR is 109dB and the recovered signal is visually indistinguishable from the original. Plotted
in green are the DFT coefficients of the signal vector recovered using the DFT dictionary with
the same measurements; the recovery SNR is now only 13.4dB. While the DFT-based estimate
does successfully capture the main peaks of each band, it naturally misses all of the sidelobes of
each band (and despite the multiband nature of x(t), these sidelobes are important for accurately
representing the window x). Moreover, due to modeling error, the DFT-based approach also results
in a number of spurious artifacts in regions where there is no significant frequency content in the
original signal.

We note that for the DFT-based approach in this experiment, the best estimate produced
using CoSaMP(A,Ψ,y, S) was observed when setting S = 85. On the other hand, the DPSS
approach (according to our rule of thumb) selects k = 27, so that in this approach there are a
total of kK = 135 free parameters. It is not surprising that the DPSS approach results in superior
performance since the model has so many extra dimensions. What is potentially surprising is that
if we set S = 135, the DFT approach exhibits a complete breakdown and is unable to make any
practical use of these extra degrees of freedom.

7 Conclusions

There are likely to be many ways that one could bridge the gap between the discrete, finite frame-
work of CS and the problem of acquiring a continuous-time signal. In this paper, using a dictionary
constructed from a sequence of modulated DPSS basis elements, we have argued that when dealing
with finite-length windows of Nyquist-rate samples, it is possible to map the multiband analog
signal model—in a very natural way—into a finite-dimensional sparse model. This allows us to
apply many of the standard theoretical and algorithmic tools from CS to the problem of recovering
such a sample vector from compressive measurements. Moreover, the sparse signals that we en-
counter in this model actually have a structured sparsity pattern (namely, block-sparsity), which
we can exploit through the use of specialized “model-based” CS recovery algorithms. Although
our recovery bounds are qualified—we have showed that most finite-length sample vectors arising
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Figure 9: Comparison of recovery performance between block-based CoSaMP with the multiband modulated
DPSS dictionary and standard CoSaMP using the DFT basis. (a) Performance comparison as a function of

M
2NWK . (b) The DTFT of a representative signal, and the recovered estimate using each approach.

from multiband analog signals can be highly accurately recovered from a number of measurements
that is proportional to the Landau rate—these qualifiers are ultimately necessary. Moreover, we
have demonstrated through a series of careful experiments that the multiband modulated DPSS
dictionary can provide a far superior alternative to the DFT for sparse recovery. Our experiments
also confirm that certain practical measurement architectures such as the random demodulator,
which was previously viewed only as a mechanism for capturing multitone signals [43], can indeed
be used to efficiently capture multiband signals.

As the reader will note from our discussions regarding the selection of the number of columns
per band k, the computation of P(x,K), etc., there are certain subtle challenges in choosing the
proper dictionary design and implementing an effective recovery algorithm. However, our experi-
mental results do confirm that it is possible to navigate these waters. We have also aimed to give
some practical insight into the proper choice of design parameters, and we have made all of the soft-
ware for our simulations available for download at http://www.mines.edu/~mwakin/software/.
Ultimately, in addition to the open algorithmic questions discussed in Section 6, there are many
open questions concerning the most effective way to construct a multiband DPSS dictionary; one
could imagine possible advantages to considering multiscale dictionaries (see also [58]), adaptive
band sizes, overlapping bands, etc. We leave the consideration of these questions to future work.

It is worth emphasizing that the remarkable efficiency of our DPSS dictionary for sparsely ap-
proximating finite-length multiband sample vectors is owed entirely to the eigenvalue concentration
behavior described in Section 4.2.4. It would be interesting to explore other possible problem do-
mains (beyond multiband signal models) where similar eigenvalue concentration behavior holds.
Again, we leave the consideration of such questions to future work.

We conclude by noting that applications of sparse representations abound, and so there are
many possible settings outside of CS where the multiband modulated DPSS dictionary could be
useful for processing finite-length sample vectors arising from multiband signals. For example,
there are several possible applications in compressive signal processing [20], where one can attempt
to answer certain questions about a signal vector directly from compressive measurements of that
vector without having to actually perform signal recovery. One specific problem in this area could
involve cancellation of an interfering signal that has corrupted the measurements. Suppose s(t) is
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an analog signal of interest (not necessarily obeying a multiband model), and i(t) is a multiband (or
even just single-band) interferer supported on bands indexed by the set I. Let s and i denote the
sample vectors arising from these two signals, and suppose we collect compressive measurements
y = A(s+i). Then because i is concentrated inR(ΨI), it follows thatAi is concentrated inR(ÃI),

where Ã = AΨ. One can therefore define an orthogonal projection matrix P := I − ÃIÃ
†
I . By

applying P to the measurement vector y, one can remove virtually all of the influence of the
interferer, since PAi ≈ 0 even for very strong interferers, and therefore Py = PAs + PAi ≈
PAs. From these processed measurements Py one can attempt to recover s or answer various
compressive-domain questions that do not require signal recovery. It can even be possible to derive
RIP bounds for PA and thus guarantee the performance of these techniques. We refer the reader
to [19, 22] for additional discussion of the interference cancellation problem and an example using
a preliminary version of the modulated DPSS dictionary.
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A Review of the Karhunen-Loeve (KL) Transform

We briefly review the basic ideas behind the KL transform [67]. Suppose that r ∈ CN is a random
vector with mean zero and a known autocorrelation matrix denoted by R with entries defined as

R[m,n] = E
[
r[n]r[m]

]
,

where the overline denotes complex conjugation. Next suppose that we would like to find, for some
fixed k ∈ {1, 2, . . . , N}, a k-dimensional subspace Q of CN that best captures the energy of r in
expectation. That is, we wish to find the Q that minimizes

E
[
‖r − PQr‖22

]

over all k-dimensional subspaces of CN . The optimal solution to this minimization problem can be
found by computing an eigendecomposition of R. In particular, let

R = UΛRU
H

denote the eigendecomposition of R, with the eigenvalues λ0(R) ≥ λ1(R) ≥ · · · ≥ λN−1(R) ≥ 0
along the main diagonal of ΛR. Let Uk denote the N × k matrix resulting by taking the first k
columns of U . The columns of Uk provide an orthonormal basis for the optimal Q, and thus we
will have PQ = UkU

H
k . For this optimal choice of Q, we will also have

E
[
‖r − PQr‖22

]
=

N−1∑

`=k

λ`(R).
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B Proof of Theorem 4.1

Proof. Let f ′ denote a random variable with uniform distribution on [fc−W, fc+W ], let θ′ denote
a random variable with uniform distribution on [0, 2π), and let r = r(f ′, θ′) := ejθ

′
ef ′ denote a

random vector in CN defined in terms of f ′ and θ′. Then we can write

1

2W
·
∫ fc+W

fc−W
‖ef − PQef‖22 df =

∫ fc+W

fc−W
‖ef ′ − PQef ′‖22pf ′(f ′)df ′

=

∫ 2π

0

∫ fc+W

fc−W
‖ejθ′(ef ′ − PQef ′)‖22pf ′(f ′)

1

2π
df ′ dθ′

=

∫ 2π

0

∫ fc+W

fc−W
‖ejθ′ef ′ − PQ(ejθ

′
ef ′)‖22pf ′(f ′)pθ′(θ′)df ′ dθ′

= E
[
‖r − PQr‖22

]
.

We next verify that the random vector r has mean zero, i.e., for each n ∈ {0, 1, . . . , N −1} we have

E [r[n]] =

∫ 2π

0

∫ fc+W

fc−W
ejθ
′
ef ′ [n]pf ′(f

′)pθ′(θ
′) df ′ dθ′

=

∫ 2π

0

∫ fc+W

fc−W
ejθ
′
ej2πf

′n 1

4Wπ
df ′ dθ′

=
1

4Wπ
·
∫ fc+W

fc−W
ej2πf

′n

∫ 2π

0
ejθ
′
dθ′ df ′

= 0.

Next, observe that the random vector r has autocorrelation matrix R with entries:

R[m,n] = E
[
r[n]r[m]

]

= E
[
ef ′ [n]e−jθ

′
ejθ
′
ef ′ [m]

]

=
1

2W
·
∫ fc+W

fc−W
e−j2πf

′nej2πf
′mdf ′

=
1

2W
· ej2πfcm · 2W sinc (2W (m− n)) · e−j2πfcn.

Therefore, we can write

R =
1

2W
·EfcBN,WE

H
fc , (66)

where Efc is as defined in (44) and BN,W is as defined in (36). Plugging the eigendecomposition
for BN,W from (38) into (66), we obtain

R =
1

2W
·EfcSN,WΛN,WS

H
N,WE

H
fc .

From this eigendecomposition and standard results concerning the KL transform (see Appendix A),
it follows that the optimal k-dimensional subspace Q will be spanned by the first k columns of
EfcSN,W . Furthermore, this choice of Q yields

1

2W
·
∫ fc+W

fc−W
‖ef − PQef‖22 df = E

[
‖r − PQr‖22

]
=

N−1∑

`=k

λ`(R) =
1

2W

N−1∑

`=k

λ
(`)
N,W ,

as desired.
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C Proof of Theorem 4.2

Proof. The sequence x[n] := x(nTs), n ∈ Z is a discrete-time, zero-mean, wide sense stationary
random process with power spectrum equal to

Px(f) =

{
1

2W , fc −W ≤ f ≤ fc +W,
0, otherwise,

and the vector x ∈ CN equals the restriction of x[n] to the indices n = 0, 1, . . . , N − 1. The inverse
DTFT of the power spectrum Px(f) gives the autocorrelation function for x[n]:

rx[n] = ej2πnfc · sinc (2Wn) .

It follows that the random vector x has mean zero and an autocorrelation matrix R given by (66).
Thus, x has exactly the same autocorrelation structure as the random vector r we considered in
Appendix B, and so the same KL transform analysis applies. Finally, we can also compute

E
[
‖x‖22

]
=

N−1∑

n=0

E
[
|x[n]|2

]
= Nrx[0] = N.

D Proof of Theorem 4.3

Proof. First, let us define Efc to be an operator that modulates a discrete-time signal by fc; more
specifically,

Efc(s)[n] = ej2πfcns[n]

for all n ∈ Z. Since the modulated DPSS vectors form an orthonormal basis for CN , and since the
discrete-time signal x[n] is time-limited, we can write x[n] as

x =
N−1∑

`=0

α[`]EfcTN (s
(`)
N,W ),

where the coefficients α are given by α[`] = 〈x, EfcTN (s
(`)
N,W )〉 = 〈x,Efcs

(`)
N,W 〉 for ` = 0, 1, . . . , N−1

and satisfy ‖α‖22 = ‖x‖22 = ‖x‖22. By linearity, we can also write

Bfc,Wx =

N−1∑

`=0

α[`]Bfc,WEfcTN (s
(`)
N,W ),

where the functions Bfc,WEfcTN (s
(`)
N,W ) are modulated DPSS’s and therefore remain orthogonal.

Therefore,

(1− δ)‖x‖22 ≤ ‖Bfc,Wx‖22 =

N−1∑

`=0

|α[`]|2‖Bfc,WEfcTN (s
(`)
N,W )‖22 =

N−1∑

`=0

|α[`]|2λ(`)
N,W .
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Now note that if k = 2NW (1 + ε), then

(1− δ)‖x‖22 ≤
k−1∑

`=0

|α[`]|2λ(`)
N,W +

N−1∑

`=k

|α[`]|2λ(`)
N,W

≤
k−1∑

`=0

|α[`]|2 +
N−1∑

`=k

‖x‖22λ(`)
N,W

≤ ‖PQx‖22 + ‖x‖22NC3e
−C4N

= (‖x‖22 − ‖x− PQx‖22) + ‖x‖22NC3e
−C4N

for N ≥ N1. Rearranging terms in the above inequality yields (47).

E Proof of Theorem 4.4

Proof. For each i ∈ I, the sequence xi[n] := xi(nTs), n ∈ Z is a discrete-time, zero-mean, wide
sense stationary random process with power spectrum equal to

Pxi(f) =

{
1

2WK , f ∈
[
−BnyqTs

2 + i2W,−BnyqTs
2 + (i+ 1)2W

]
,

0, otherwise.

These discrete-time sequences will also be independent and jointly wide sense stationary. Defining
xi ∈ CN to be the restriction of xi[n] to the indices n = 0, 1, . . . , N − 1, we have x =

∑
i∈I xi and

Px(f) =
∑

i∈I Pxi(f). We can compute

E
[
‖x‖22

]
=

N−1∑

n=0

E
[
|x[n]|2

]
=

N−1∑

n=0

∑

i,`∈I
E
[
xi[n]x`[n]

]
=

N−1∑

n=0

∑

i∈I
E
[
|xi[n]|2

]
= N ·K · 1

K
= N.

Also, we have

E
[
‖x− PΨIx‖22

]
= E



∥∥∥∥∥

(∑

i∈I
xi

)
− PΨI

(∑

i∈I
xi

)∥∥∥∥∥

2

2




= E



∥∥∥∥∥
∑

i∈I
(xi − PΨIxi)

∥∥∥∥∥

2

2




≤ E



(∑

i∈I
‖xi − PΨIxi‖2

)2



≤ E



(∑

i∈I
‖xi − PΨixi‖2

)2



≤ E

[
K
∑

i∈I
‖xi − PΨixi‖22

]

= K
∑

i∈I
E
[
‖xi − PΨixi‖22

]

= K ·K · 1

2WK

N−1∑

`=k

λ
(`)
N,W ,
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where the third line follows from the triangle inequality, the fourth line follows because the columns
of each Ψi belong to ΨI as well, the sixth line follows because ‖h‖21 ≤ K‖h‖22 for any K-dimensional
vector h, and the final line follows from Theorem 4.2.

F Proof of Lemma 5.1

Proof. Let Ψi1 and Ψi2 denote the blocks from which q1 and q2, respectively, are drawn. If i1 = i2,
we have already established at the beginning of Section 4.3.1 that 〈q1, q2〉 = 0. Thus, we assume
henceforth that i1 6= i2.

Let Efi denote an operator that modulates a discrete-time signal by fi; more specifically,
Efi(s)[n] = ej2πfins[n] for all n ∈ Z. Let Bfi,W denote an orthogonal projection operator that
takes a discrete-time signal, bandlimits its DTFT to the frequency range f ∈ [fi−W, fi +W ], and
returns the corresponding signal in the time domain. Finally, define Bcfi1 ,fi2 ,W := I−Bfi1 ,W−Bfi2 ,W ,

which is also an orthogonal projection for finite-energy signals because |fi1 − fi2 | ≥ 2W . For some
`, `′ ∈ {0, 1, . . . , 2NW (1− ε)− 1}, we can write

〈q1, q2〉 =
〈
Efi1

s
(`)
N,W ,Efi2

s
(`′)
N,W

〉

=
〈
Efi1TNs

(`)
N,W , Efi2TNs

(`′)
N,W

〉

=
〈
Bfi1 ,WEfi1TNs

(`)
N,W + Bfi2 ,WEfi1TNs

(`)
N,W + Bcfi1 ,fi2 ,WEfi1TNs

(`)
N,W ,

Bfi1 ,WEfi2TNs
(`′)
N,W + Bfi2 ,WEfi2TNs

(`′)
N,W + Bcfi1 ,fi2 ,WEfi2TNs

(`′)
N,W

〉

=
〈
Bfi1 ,WEfi1TNs

(`)
N,W ,Bfi1 ,WEfi2TNs

(`′)
N,W

〉
+
〈
Bfi2 ,WEfi1TNs

(`)
N,W ,

Bfi2 ,WEfi2TNs
(`′)
N,W

〉
+
〈
Bcfi1 ,fi2 ,WEfi1TNs

(`)
N,W ,Bcfi1 ,fi2 ,WEfi2TNs

(`′)
N,W

〉
.

From (32), (34), and the fact that |fi2 − fi1 | ≥ 2W , it follows that

| 〈q1, q2〉 | ≤
√
λ

(`)
N,W ·

√
1− λ(`′)

N,W +

√
1− λ(`)

N,W ·
√
λ

(`′)
N,W +

√
1− λ(`)

N,W ·
√

1− λ(`′)
N,W .

Finally, (51) follows by bounding the
√
λ terms in this expression by 1 and by bounding the

√
1− λ

terms in this expression using (39).
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