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I. INTRODUCTION

In recent years there has been a significant amount of progress in
our understanding of how to recover a rank-r matrix from incomplete
observations, even when the number of observations is much less
than the number of entries in the matrix. (See [4] for an overview
of this literature.) In this work we consider a new setting where
we aim to recover an underlying and dynamically evolving low-rank
matrix from binary observations. This problem arises in a variety
of applications. For example, low-rank models have been used in
the context of personalized learning systems (see [6]), but in such
a context we can expect a student’s knowledge/skill to change (and
hopefully improve) throughout the learning process as a result of
lectures, homeworks, and so on. Moreover, in such a scenario we may
only have access to binary responses (right/wrong) for their answers
to the assigned questions from which we hope to learn. Our goal is to
unite the recent work in the area of one-bit matrix completion [3, 2,
1] with recent efforts in the context of dynamic matrix completion,
including [8], which provides recovery guarantee when one of the
factor matrices of the underlying low-rank matrix is changing over
time and [9], which use a temporal regularizer to exploit temporal
dependence.

II. THE DYNAMIC ONE-BIT MATRIX COMPLETION PROBLEM

We wish to consider the case where we have a low-rank matrix
changing over time during the measurement process. At time t we
have a rank-r matrix Xt ∈ Rn1×n2 with factorization Xt =
U(V t)T . Here we assume a random walk dynamic model on the
right factor matrix V :

V t = V t−1 + εt, t = 2, . . . , d, (1)

where each entry of εt follows N (0, σ2
2). We assume that we only

have one-bit observations on a subset of the entries at each time-step,
i.e., we observe

Y ti,j =

{
+1 with prob. f

(
Xt
i,j

)
,

−1 with prob. 1− f
(
Xt
i,j

) for (i, j) ∈ Ωt, (2)

where f is fixed and known. Two common choices for f are
logistic function f(x) = 1/(1 + e−x/σ1) and the probit function
f(x) = Φ(x/σ1), where Φ(x) is the cumulative distribution function
of standard Gaussian and σ2

1 is the variance of zero-mean logistic
(Gaussian) distribution. We also denote pt = |Ωt|/(n1n2). Our goal
is to recover Xd from {Y t,Ωt}, t = 1, . . . , d.

III. ONE-BIT LOWEMS

The negative log-likelihood for the given problem at time t is

L(X; Ωt, Y t) = −
∑

(i,j)∈Ωt

{
IY t

i,j=1 log(f(Xi,j))

+ IY t
i,j=−1 log(1− f(Xi,j))

}
.

(3)

We additionally assume that the underlying matrix Xd satifies∥∥Xd
∥∥
∞ ≤ α, which will make the recovery well-posed.

The proposed one-bit LOWEMS (Locally Weighted Matrix
Smoothing) is formulated as the following optimization program:

X̂d = arg min
X∈C(r,α)

F (X) = arg min
X∈C(r,α)

d∑
t=1

wtL(X; Ωt, Y t), (4)

where C(r, α) := {X ∈ Rn1×n2 : rank(X) ≤ r, ‖X‖∞ ≤ α}
and {wt}dt=1 are non-negative weights. The optimal weights can be
computed as follows:

w∗j =
1∑d

i=1
1

1+(d−i)κ

1

1 + (d− j)κ , 1 ≤ j ≤ d. (5)

provided κ := σ2
2/σ

2
1 is known. (See [8], Sec 3.1.)

IV. CONSTRAINED ALTERNATING GRADIENT DESCENT

The program in (4) can be reformulated as

X̂d = arg min
X=UV T ,‖X‖∞≤α

F
(
UV T

)
, (6)

where U ∈ Rn1×r, V ∈ Rn2×r . We use alternating gradient descent
to minimize F(U, V ), which alternatively applies a gradient descent
step over U (or V ) while holding V (or U ) fixed until a stopping
criterion is reached. Our choice of stepsize is the safe-guard LBB
(long Barzilai-Borwein) stepsize [5]. We also rescale U and V
following the gradient descent step so that

∥∥UV T∥∥∞ ≤ α is satisfied
at each step.

V. SIMULATIONS AND EXPERIMENTS

We set n1 = 100, n2 = 50, d = 4, r = 2, pt = 0.8 for all
t, and use the logistic function for f . We consider two baselines:
baseline one is only using yd to recover Xd and simply ignoring
y1, . . . yd−1; baseline two is using {yt}dt=1 with equal weights. Note
that both of these can be viewed as special cases of one-bit LOWEMS
with weights (0, . . . , 0, 1) and ( 1

d
, 1
d
, . . . , 1

d
) respectively.

Figure 1 shows that the recovery performance is poor when
noise is either too large or too small, a similar phenomenon as
observed in [3]. Figure 2 illustrates that one-bit LOWEMS reduces
the recovery error compared to our baselines, which is also observed
in the continuous observation setting [8]. Figure 3 shows that one-
bit LOWEMS reduces the sample complexity required to guarantee
successful recovery (defined as a relative error ≤ 0.4).

Furthermore, we test the one-bit LOWEMS approach in the con-
text of personalized learning using the ASSISTment dataset (for a
precise description, see [7]). We truncate the dataset by eliminating
students/questions with less than 100 responses. We keep a portion
(10%) of the most recent data as the testing set, and use the remaining
data to learn the matrix. To exploit the dynamic constraint, we divide
the training set into d bins chronologically. As we can see from
Figure 4, exploiting the dynamic constraint yields better prediction
performance on this dataset.
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Fig. 1. Recovery error vs. observation noise (σ2 = 0.1).
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Fig. 2. Recovery error vs. perturbation noise (σ1 = 0.1).
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Fig. 3. Sample complexity vs. perturbation noise (σ1 = 0.1).
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Fig. 4. Experimental results on ASSISTment dataset
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