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Abstract—In this paper we consider the problem of 1-bit
matrix completion, where instead of observing a subset of the
real-valued entries of a matrix M , we obtain a small number of
binary (1-bit) measurements generated according to a probability
distribution determined by the real-valued entries of M . The
central question we ask is whether or not it is possible to obtain
an accurate estimate of M from this data. In general this would
seem impossible, however, it has recently been shown in [1]
that under certain assumptions it is possible to recover M by
optimizing a simple convex program. In this paper we provide
lower bounds showing that these estimates are near-optimal.

I. INTRODUCTION

The problem of recovering a matrix from an incomplete
sampling of its entries—also known as matrix completion—
arises in a wide variety of practical situations. In many of these
settings, however, the observations are not only incomplete,
but also highly quantized, often even to a single bit. In this
paper we consider a statistical model for such data where
instead of observing a real-valued entry as in the original
matrix completion problem, we are now only able to see a
positive or negative rating. This binary output is generated
according to a probability distribution which is parameterized
by the corresponding entry of the unknown low-rank matrix
M . A natural question in this context is: “Given observations
of this form, can we recover the underlying matrix?”

The first theoretical accuracy guarantees in this context
were recently established by the current authors in [1]. In-
spired by recent theoretical results on unquantized matrix
completion, [1] establishes that O(rd) binary observations are
sufficient to accurately recover a d×d, rank-r matrix by convex
programming. In this paper we review the upper bounds of [1],
and provide lower bounds showing that these upper bounds are
nearly optimal. First, however, we provide a brief review of
the existing results on matrix completion.

A. Matrix completion

Matrix completion arises in a wide variety of practical
contexts, including collaborative filtering [2], system identifi-
cation [3], sensor localization [4–6], rank aggregation [7], and
many more. There is now a strong base of theoretical results
concerning matrix completion [8–11]; a typical result is that a
generic d× d matrix of rank r can be exactly recovered from
O(r d polylog(d)) randomly chosen entries.

Although these results are quite impressive, there is an
important gap between the statement of the problem as con-
sidered in the matrix completion literature and many of the
most common applications discussed therein. As an example,
consider collaborative filtering and the now-famous “Netflix
problem.” In this setting, we assume that there is some
unknown matrix whose entries each represent a rating for
a particular user on a particular movie. Since any user will
rate only a small subset of possible movies, we are only able
to observe a small fraction of the total entries in the matrix,
and our goal is to infer the unseen ratings from the observed
ones. If the rating matrix is low-rank, then this would seem
to be the exact problem studied in the matrix completion
literature. However, there is a subtle difference: the theory
developed in this literature generally assumes that observations
consist of (possibly noisy) continuous-valued entries of the
matrix, whereas in the Netflix problem the observations are
“quantized” to the set of integers between 1 and 5. If we
believe that it is possible for a user’s true rating for a particular
movie to be, for example, 4.5, then we must account for the
impact of this “quantization noise” on our recovery. One could
potentially treat quantization simply as a form of bounded
noise, but this is unsatisfying because the ratings aren’t just
quantized — there are also hard limits placed on the minimum
and maximum allowable ratings. (Why should we suppose that
a movie given a rating of 5 could not have a true underlying
rating of 6 or 7 or 10?) The inadequacy of standard matrix
completion techniques in dealing with this effect is particularly
pronounced when we consider recommender systems where
each rating consists of a single bit representing a positive or
negative rating (consider for example rating music on Pandora,
the relevance of advertisements on Hulu, or posts on Reddit or
MathOverflow). In such a case, the assumptions made in the
existing theory of matrix completion do not apply, standard
algorithms are ill-posed, and a new theory is required.

B. Outline and notation

The remainder of the paper is organized as follows. In Sec-
tion II we provide an overview of the 1-bit matrix completion
problem, introducing the observation model, describing the
assumptions necessary for 1-bit matrix completion to be well-
posed, and summarizing the upper bounds established in [1]. In
Section III we describe a series of lower bounds that show that
the upper bounds presented in Section II are nearly optimal.



Finally, Section IV concludes with a discussion of future work.
We now provide a brief summary of some of the key

notation used in this paper. We use [d] to denote the set
of integers {1, . . . , d}. We use capital boldface to denote
a matrix (e.g., M ) and standard text to denote its entries
(e.g., Mi,j). We let ‖M‖ denote the operator norm of M ,
‖M‖F =

√∑
i,jM

2
i,j denote the Frobenius norm of M ,

‖M‖∗ denote the nuclear or Schatten-1 norm of M (the
sum of the singular values), and ‖M‖∞ = maxi,j |Mi,j |
denote the entry-wise infinity-norm of M . For two scalars
p, q ∈ [0, 1], the Hellinger distance,

d2
H(p, q) := (

√
p−√q)2 + (

√
1− p−

√
1− q)2

is a standard notion of distance between two binary proba-
bility distributions. We allow the Hellinger distance to act on
matrices in a natural way: for matrices P ,Q ∈ [0, 1]d1×d2 ,
we define

d2
H(P ,Q) :=

1

d1d2

∑
i,j

d2
H(Pi,j , Qi,j).

II. THE 1-BIT MATRIX COMPLETION PROBLEM

A. Observation model

We now introduce the 1-bit observation model considered
in [1]. Given a matrix M ∈ Rd1×d2 , a subset of indices Ω ⊂
[d1] × [d2], and a differentiable function f : R → [0, 1], we
observe

Yi,j =

{
+1 w. p. f(Mi,j),

−1 w. p. 1− f(Mi,j)
for (i, j) ∈ Ω. (1)

When the function f behaves like a cumulative distribution
function, the model (1) is equivalent to the following natural
latent variable model. Suppose that Z is a random matrix
with i.i.d. entries, and choose f(x) := P

(
Z1,1 ≥ −x

)
. Then

we can rewrite (1) as

Yi,j =

{
+1 if Mi,j + Zi,j ≥ 0

−1 if Mi,j + Zi,j < 0
for (i, j) ∈ Ω. (2)

As examples, we consider two natural choices for f (or
equivalently, for Z).

Example 1 (Logistic regression/Logistic noise). The logistic
regression model, which is common in statistics, is captured
by (1) with f(x) = ex

1+ex and by (2) with Zi,j i.i.d. according
to the standard logistic distribution.

Example 2 (Probit regression/Gaussian noise). The probit
regression model is captured by (1) by setting f(x) = 1 −
Φ(−x/σ) = Φ(x/σ) where Φ is the cumulative distribution
function of a standard Gaussian and by (2) with Zi,j i.i.d.
according to a mean-zero Gaussian distribution with variance
σ2.

As has been important in previous work on matrix comple-
tion, in order to show that 1-bit matrix completion is feasible
we will assume that Ω is chosen at random with E |Ω| = m.
Specifically, Ω follows a binomial model in which each entry

(i, j) ∈ [d1] × [d2] is included in Ω with probability m
d1d2

,
independently. However, our lower bounds will not require
this assumption, and hold for arbitrary sets Ω.

B. Assumptions

The majority of the literature on matrix completion assumes
that the first r singular values of M are nonzero and the
remainder are exactly zero. However, in many applications
the singular values instead exhibit only a gradual decay
towards zero. Thus, in this paper we allow a relaxation of the
assumption that M has rank exactly r. Instead, we assume
that ‖M‖∗ ≤ α

√
rd1d2, where α is a parameter left to be

determined, but which will often be of constant order. In other
words, the singular values of M belong to a scaled `1 ball. In
compressed sensing, belonging to an `p ball with p ∈ (0, 1] is
a common relaxation of exact sparsity; in matrix completion,
the nuclear-norm ball (or Schatten-1 ball) plays an analogous
role.

The particular choice of scaling, α
√
rd1d2, arises from the

following considerations. Suppose that each entry of M is
bounded in magnitude by α and that rank(M) ≤ r. Then

‖M‖∗ ≤
√
r ‖M‖F ≤

√
rd1d2 ‖M‖∞ ≤ α

√
rd1d2.

Thus, the assumption that ‖M‖∗ ≤ α
√
rd1d2 is a relaxation

of the conditions that rank(M) ≤ r and ‖M‖∞ ≤ α.
The condition that ‖M‖∞ ≤ α essentially means that the
probability of seeing a +1 or −1 does not depend on the
dimension. It is also a way of enforcing that M should not be
too “spiky”; this is an important assumption in order to make
the recovery of M well-posed (for example, see [12]).

Finally, some assumptions must be made on f for recovery
of M to be feasible. We define two quantities Lα and βα
which control the “steepness” and “flatness” of f , respectively:

Lα := sup
|x|≤α

|f ′(x)|
f(x)(1− f(x))

(3)

and
βα := sup

|x|≤α

f(x)(1− f(x))

(f ′(x))2
. (4)

We will restrict our attention to f such that Lα and βα are
well-defined. In particular, we assume that f and f ′ are non-
zero in [−α, α]. This assumption is fairly mild—for example,
it includes the logistic and probit models (as we will see
below in Remark 1). The quantity Lα appears only in the
upper bounds, but it is generally well behaved. The quantity
βα appears both in the upper and lower bounds. Intuitively, it
controls the “flatness” of f in the interval [−α, α]—the flatter
f is, the larger βα is. It is clear that some dependence on βα
is necessary. Indeed, if f is perfectly flat, then the magnitudes
of the entries of M cannot be recovered. For example, if
M is a rank-1 matrix, i.e., we can write M = uvT for
some pair of vectors u and v, then without noise, M is
indistinguishable from M̃ = ũṽT , where ũ and ṽ have the
same sign patterns and u and v, respectively. Of course, when
α is a fixed constant and f is a fixed function, both Lα and βα
are bounded by fixed constants independent of the dimension.



C. Upper bounds for 1-bit matrix completion

In this section, we review the upper bounds of [1], which
have two goals. The first goal is to accurately recover M
itself, and the second is to accurately recover the distribution
of Y given by f(M).1 Both of these results are obtained
by maximizing the log-likelihood function of the optimization
variable X given our observations subject to a set of convex
constraints. In many cases, including the logistic and probit
models, the log-likelihood function is concave, and hence
recovery amounts to solving a convex program.

Theorem 1. Assume that ‖M‖∗ ≤ α
√
d1d2r and ‖M‖∞ ≤

α. Suppose that Ω is chosen at random following the binomial
model of Section II-A with E |Ω| = m. Suppose that Y is
generated as in (1). Let Lα and βα be as in (3) and (4). If
m ≥ (d1 + d2) log(d1d2), then there is an algorithm which
outputs M̂ such that with probability at least 1−C1/(d1+d2),

1

d1d2
‖M̂ −M‖2F ≤ Cα

√
r(d1 + d2)

m
(5)

with Cα := C2αLαβα. Above, C1 and C2 are absolute
constants.

Remark 1 (Recovery in the logistic and probit models). The
logistic model satisfies the hypotheses of Theorem 1 with
βα = (1+eα)2

eα ≈ eα and Lα = 1. The probit model has

βα ≤ c1σ2e
α2

2σ2 and Lα ≤ c2
α
σ + 1

σ

where we can take c1 = π and c2 = 8. In particular, in the
probit model the bound in (5) reduces to

1

d1d2
‖M̂ −M‖2F ≤ Cα (α+ σ) e

α2

2σ2

√
r(d1 + d2)

m
. (6)

Hence, when σ < α, increasing the size of the noise leads
to significantly improved error bounds—this is not an artifact
of the proof. We will see in Section III that the exponential
dependence on α in the logistic model (and on α/σ in the
probit model) is intrinsic to the problem. Intuitively we should
expect this since for such models, as ‖M‖∞ grows large, we
essentially revert to the noiseless setting where estimation of
M is impossible. Furthermore, in Section III we will also
see that when α (or α/σ) is bounded by a constant, the error
bound (5) is optimal up to a constant factor. Fortunately, in
many applications, one would expect α to be small, and in
particular to have little, if any, dependence on the dimension.

In many situations, we might not be interested in the under-
lying matrix M , but rather in determining the distribution of
the unknown entries of Y . For example, in recommender sys-
tems, a natural question would be to determine the likelihood
that a user would enjoy a particular unrated item. Surprisingly,
this distribution may be accurately recovered without any
restriction on the infinity-norm of M . This may be unexpected

1Strictly speaking, f(M) ∈ [0, 1]d1×d2 is simply a matrix of scalars, but
these scalars implicitly define the distribution of Y , so we will sometimes
abuse notation slightly and refer to f(M) as the distribution of Y .

to those familiar with the matrix completion literature in which
“non-spikiness” constraints seem to be unavoidable. In fact, we
will show in Section III that the bound in Theorem 2 is near-
optimal—even under the added constraint that ‖M‖∞ ≤ α,
it would be impossible to estimate f(M) significantly more
accurately.

Theorem 2. Assume that ‖M‖∗ ≤ α
√
d1d2r. Suppose that Ω

is chosen at random following the binomial model of Section
II-A with E |Ω| = m. Suppose that Y is generated as in (1),
and let L = limα→∞ Lα. If m ≥ (d1 + d2) log(d1d2),
then there is an algorithm which outputs M̂ such that with
probability at least 1− C1/(d1 + d2),

d2
H(f(M̂), f(M)) ≤ C2αL

√
r(d1 + d2)

m
. (7)

Above, C1 and C2 are absolute constants.

While L = 1 for the logistic model, the astute reader will
have noticed that for the probit model L is unbounded—that is,
Lα tends to∞ as α→∞. L would also be unbounded for the
case where f(x) takes values of 1 or 0 outside of some range
(as would be the case in (2) if the distribution of the noise
had compact support). Fortunately, one can recover a result
for these cases by enforcing an infinity-norm constraint [1].

III. LOWER BOUNDS

The upper bounds in Theorems 1 and 2 show that we may
recover M or f(M) from incomplete, binary measurements.
In this section, we discuss the extent to which these theorems
are optimal. We give three theorems, all proved using infor-
mation theoretic methods, which show that these results are
nearly tight, even when some of the assumptions are relaxed.
Theorem 3 gives a lower bound to nearly match the upper
bound on the error in recovering M derived in Theorem
1. Theorem 4 compares our upper bounds to those available
without discretization and shows that very little is lost when
discretizing to a single bit. Finally, Theorem 5 gives a lower
bound matching, up to a constant factor, the upper bound
on the error in recovering the distribution f(M) given in
Theorem 2. Theorem 5 also shows that Theorem 2 does not
suffer by dropping the canonical “spikiness” constraint.

Our lower bounds require a few assumptions, so before we
delve into the bounds themselves, we briefly argue that these
assumptions are innocuous. For notational simplicity, we will
assume without loss of generality that d1 ≥ d2 throughout
this section. Similarly, without loss of generality (since we
can always adjust f to account for rescaling M ), we assume
that α ≥ 1. Next, we require that the parameters be sufficiently
large so that

α2rd1 ≥ C0 (8)

for an absolute constant C0. Note that we could replace this
with a simpler, but still mild, condition that d1 > C0. Finally,
we also require that r ≥ c where c is a constant and that
r ≤ O(d2/α

2), where O(·) hides parameters (which may
differ in each theorem) that we make explicit below. This last



assumption simply means that we are in the situation where
r is significantly smaller than d1 and d2, i.e., the matrix is of
approximately low rank.

In the following, let

K =
{
M : ‖M‖∗ ≤ α

√
rd1d2, ‖M‖∞ ≤ α

}
(9)

denote the set of matrices whose recovery is guaranteed by
Theorem 1.

A. Recovery from 1-bit measurements

First, we show that the error in Theorem 1 is nearly optimal:
there is no algorithm which can approximate M much better
than the algorithms in [1].

Theorem 3. Fix α, r, d1, and d2 to be such that r ≥ 4 and (8)
holds. Let βα be defined as in (4), and suppose that f ′(x) is
decreasing for x > 0. Let Ω be any subset of [d1]× [d2] with
cardinality m, and let Y be as in (1). Consider any algorithm
which, for any M ∈ K, takes as input Yi,j for (i, j) ∈ Ω

and returns M̂ . Then, there exists M ∈ K such that with
probability at least 3/4,

1

d1d2
‖M − M̂‖2F ≥ min

{
C1, C2α

√
β 3

4α

√
rd1

m

}
(10)

as long as the right-hand side of (10) exceeds rα2/d2. Above,
C1 and C2 are absolute constants.2

The requirement that the right-hand side of (10) be larger
than rα2/d2 is satisfied as long as r ≤ O(d2/α

2). In
particular, it is satisfied whenever

r ≤ C3
min{1, β0} · d2

α2

for a fixed constant C3. Note also that in the latent variable
model in (2), f ′(x) is simply the probability density of Zi,j .
Thus, the requirement that f ′(x) be decreasing is simply that
the probability density have decreasing tails. One can easily
check that this is satisfied for the logistic and probit models.

Note that if α is bounded by a constant and f is fixed (in
which case βα and βα′ are bounded by a constant), then the
lower bound of Theorem 3 matches the upper bound given
in (5) up to a constant. When α is not treated as a constant,
the bounds differ by a factor of

√
βα. In the logistic model

βα ≈ eα and so this amounts to the difference between eα/2

and eα. The probit model has a similar change in the constant
of the exponent.

B. Recovery from unquantized measurements

Next we show that, surprisingly, very little is lost by
discretizing to a single bit. In Theorem 4, we consider an
“unquantized” version of the latent variable model in (2)
with Gaussian noise. That is, let Z be a matrix of i.i.d.
Gaussian random variables, and suppose that the noisy entries

2Here and in the theorems below, the choice of 3/4 in the probability bound
is arbitrary, and can be adjusted at the cost of changing C0 in (8) and C1

and C2. Similarly, β 3
4
α can be replaced by β(1−ε)α for any ε > 0.

Mi,j + Zi,j are observed directly, without discretization. In
this setting, we give a lower bound that still nearly matches
the upper bound given in Theorem 1, up to the βα term.

Theorem 4. Fix α, r, d1, and d2 to be such that r ≥ 1 and (8)
holds. Let Ω be any subset of [d1]× [d2] with cardinality m,
and let Z be a d1×d2 matrix with i.i.d. Gaussian entries with
variance σ2. Consider any algorithm which, for any M ∈ K,
takes as input Yi,j = Mi,j + Zi,j for (i, j) ∈ Ω and returns
M̂ . Then, there exists M ∈ K such that with probability at
least 3/4,

1

d1d2
‖M − M̂‖2F ≥ min

{
C1, C2ασ

√
rd1

m

}
(11)

as long as the right-hand side of (11) exceeds rα2/d2. Above,
C1 and C2 are absolute constants.

The requirement that the right-hand side of (11) be larger
than rα2/d2 is satisfied whenever

r ≤ C3
min{1, σ2}d2

α2

for a fixed constant C3.
Following Remark 1, the lower bound given in (11) matches

the upper bound proven in Theorem 1 up to a constant, as long
as α/σ is bounded by a constant. In other words:

When the signal-to-noise ratio is constant, almost
nothing is lost by quantizing to a single bit.

Perhaps it is not particularly surprising that 1-bit quantization
induces little loss of information in the regime where the noise
is comparable to the underlying quantity we wish to estimate—
however, what is somewhat of a surprise is that a simple
convex program can successfully recover all of the information
contained in these 1-bit measurements.

Before proceeding, we also briefly note that our Theorem 4
is somewhat similar to Theorem 3 in [12]. The authors
in [12] consider slightly different sets K: these sets are more
restrictive in the sense that it is required that α ≥

√
32 log n

and less restrictive because the nuclear-norm constraint may
be replaced by a general Schatten-p norm constraint. It was
important for us to allow α = O(1) in order to compare with
our upper bounds due to the exponential dependence of βα
on α in Theorem 1 for the probit model. This led to some
new challenges in the proof. Finally, it is also noteworthy that
our statements hold for arbitrary sets Ω, while the argument
in [12] is only valid for a random choice of Ω.

C. Recovery of the distribution from 1-bit measurements

Finally, we address the optimality of Theorem 2. We show
that under mild conditions on f , any algorithm that recovers
the distribution f(M) must yield an estimate whose Hellinger
distance deviates from the true distribution by an amount
proportional to α

√
rd1d2/m, matching the upper bound of (7)

up to a constant. Notice that the lower bound holds even if
the algorithm is promised that ‖M‖∞ ≤ α, which the upper
bound did not require.



Theorem 5. Fix α, r, d1, and d2 to be such that r ≥ 4 and (8)
holds. Let L1 be defined as in (3), and suppose that f ′(x) ≥ c
and c′ ≤ f(x) ≤ 1 − c′ for x ∈ [−1, 1], for some constants
c, c′ > 0. Let Ω be any subset of [d1] × [d2] with cardinality
m, and let Y be as in (1). Consider any algorithm which, for
any M ∈ K, takes as input Yi,j for (i, j) ∈ Ω and returns
M̂ . Then, there exists M ∈ K such that with probability at
least 3/4,

d2
H(f(M), f(M̂)) ≥ min

{
C1, C2

α

L1

√
rd1

m

}
(12)

as long as the right-hand side of (12) exceeds rα2/d2. Above,
C1 and C2 are constants that depend on c, c′.

The requirement that the right-hand side of (12) be larger
than rα2/d2 is satisfied whenever

r ≤ C3 min

{
1,

1

L2
1

}
d2

α2

for a constant C3 that depends only on c, c′. Note also that
the condition that f and f ′ be well-behaved in the interval
[−1, 1] is satisfied for the logistic model with c = 1/4 and
c′ = 1

1+e ≤ 0.269. Similarly, we may take c = 0.242 and
c′ = 0.159 in the probit model.

D. Proof sketches

All of our lower bounds follow the same general outline,
and rest on Fano’s inequality and the following lemma.

Lemma 1. Let K be defined as in (9), let γ ≤ 1 be such that
r
γ2 is an integer, and suppose that r

γ2 ≤ d1. There is a set
X ⊂ K with

|X | ≥ exp

(
rd2

16γ2

)
with the following properties:

1) For all X ∈ X , each entry has |Xi,j | = αγ.
2) For all X(i),X(j) ∈ X , i 6= j,

‖X(i) −X(j)‖2F >
α2γ2d1d2

2
.

The proof of Lemma 1 is probabilistic. Briefly, we consider
drawing each the matrices X(i) independently, as follows: we
draw independent sign flips (appropriately normalized) to fill
an appropriately sized “block” of X(i). To fill out the rest
of X(i), we simply repeat this block. It will turn out that
the expected distance E ‖X(i) −X(j)‖2F is large for distinct
i, j, and so the proof rests on showing that these distances
(which are random variables) are sufficiently concentrated that
the probability of choosing a set with the required minimum
distance is greater than zero.

With Lemma 1 in hand, the proofs of our lower bounds
follow a similar framework, with different parameter settings
in Lemma 1. Suppose that a recovery algorithm exists, which
approximately recovers M or f(M) with few observations
Y |Ω. We will imagine running the recovery algorithm on

a randomly chosen element X(i) from the set X . If the
algorithm is successful, we will arrange the parameters so that
it recovers the correct X(i) to within a Frobenius distance at
most half the minimum distance of X . Thus, we may use
this algorithm to recover X(i) exactly, with good probability.
On the other hand, we will show that the mutual information
between the correct choice of X(i) and the output of the
algorithm cannot be too large. Thus, Fano’s inequality will
imply that such recovery is impossible, and thus no such
algorithm exists. The interested reader is referred to the
preprint [1] for more details about the proofs.

IV. CONCLUSION

Many of the applications of matrix completion consider dis-
crete data, sometimes consisting of binary measurements. This
work addresses such situations. However, matrix completion
from noiseless binary measurements is extremely ill-posed,
even if one collects a binary measurement from all of the
matrix entries. Fortunately, when there are some stochastic
variations (noise) in the problem, matrix reconstruction be-
comes well-posed, and in [1] it was shown that the unknown
matrix can be accurately and efficiently recovered from binary
measurements. In this work, we focus on lower bounds, and
show that the aforementioned upper bounds are nearly optimal,
even when some restrictions are dropped.
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