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H
yperspectral imaging is a powerful technology for 
remotely inferring the material properties of the 
objects in a scene of interest. Hyperspectral images 
consist of spatial maps of light intensity variation 
across a large number of spectral bands or wave-

lengths; alternatively, they can be thought of as a measurement 
of the spectrum of light transmitted or reflected from each spa-
tial location in a scene. Because chemical elements have unique 
spectral signatures, observing the spectra at a high spatial and 
spectral resolution provides information about the material 

properties of the scene with much more accuracy than is possi-
ble with conventional three-color images. As a result, hyper-
spectral imaging is used in a variety of important applications, 
including remote sensing, astronomical imaging, and fluores-
cence microscopy. 

While hyperspectral imaging has great potential, acquiring and 
processing hyperspectral data comes with significant challenges. 
First, hyperspectral images are extremely high dimensional: in 
remote sensing applications one routinely encounters images 
over 1 GB in size. This dimensionality limits our ability to con-
duct fast and accurate inference (e.g., removing noise or identify-
ing significant spectral signatures). Second, designers of 
hyperspectral imagers face a myriad of tradeoffs related to photon 

[Rebecca M. Willett, Marco F. Duarte, Mark A. Davenport, and Richard G. Baraniuk]

[Sensing, reconstruction,  

and target detection]

Sparsity and Structure 
in Hyperspectral 

Imaging

©
 is

to
c

k
p

h
o

to
.c

o
m

/m
ip

a
n



	 IEEE SIGNAL PROCESSING MAGAZINE  [117]  JANUARY 2014

efficiency, acquisition time, dynamic 
range, and sensor size, weight, 
power, and cost. 

In this article, we review how 
novel sparse low-dimensional mod-
els are enabling sensor designers to 
tackle many of the above challenges 
and create new hyperspectral imag-
ing paradigms. We provide an overview the state of the art of 
hyperspectral image modeling with an emphasis on sparse mod-
els that exploit the fact that typical hyperspectral images, while 
high dimensional, can usually be represented using just a few 
elements from a basis or dictionary. We also explain how sparse 
models facilitate the design of novel hyperspectral imaging 
hardware for remote sensing applications. We pay special atten-
tion to cameras based on the compressive sensing (CS) frame-
work that achieve sub-Nyquist measurement rates. We then 
discuss the imaging design tradeoffs among noise performance, 
temporal/spatial/spectral resolution, and dynamic range that are 
afforded by the sensor system, the sparse image model, and 
noise and quantization errors. Finally, we conclude by describ-
ing how the combination of sparse image models and CS archi-
tectures can enable fast and accurate target detection. 

SPARSE MODELS FOR HYPERSPECTRAL IMAGES
We consider the problem of acquiring a hyperspectral data cube 
f Rd d dx y! # # m , where f , ,i j m  is the intensity of light in the hyper-
spectral image at location ( , )i j  and wavelength m . For nota-
tional simplicity, we also let f  denote a vectorized version of the 
hyperspectral data cube f, which is just a vector in Rd  where 
d d d dx y: :=
9

m. We model the hyperspectral image acquisition 
process as y Af w= + , where A Rn d! #  represents the propaga-
tion of light through the imaging system, y Rn!  is a collection 
of n  measurements generated by our imaging system (where n  
may be less than d), and w Rn!  is noise. 

Due to the significant structure present in hyperspectral 
data cubes and the linear nature of the aggregation performed 
by many hyperspectral imagers, low-dimensional signal models 
for f  have received significant attention in the hyperspectral 
imaging community in a variety of applications, including 
image compression, denoising, and processing. Most models 
operate over a partitioning of the hyperspectral data cube into 
patches along a subset of the dimensions (spatial or spectral) as 
shown in Figure 1. Spectrum patches collect the intensities for 
a single spatial location and all wavelengths; band patches col-
lect the intensities for a single wavelength at all spatial loca-
tions; and local patches collect the intensities for small intervals 
of the three dimensions. Denoting the vectorized versions of the 
patches by the set { , , , }f f f( ) ( ) ( )l1 2 f , the goal of a low-dimensional 
signal model is to represent each one of these patches using a 
small number of degrees of freedom: we search for a representa-
tion dictionary D  that yields patch representations ( )ii  with a 
small number of nonzeros so that we can write f D( ) ( )i ii= , 

, ,i l1 f= . Below, we discuss two common choices for the dic-
tionary D. 

Principal component analysis 
(PCA) assumes that the data vectors 
f( )i  lie within or very close to a k- 
dimensional subspace of R p  for 
some k p% , where p is the patch 
dimension. In PCA, one computes 
the empirical cross correlation 
matrix for the centered data C; the 

top k eigenvalues and corresponding eigenvectors of C are 
retained so each patch can be accurately represented as a linear 
combination of these eigenvectors. In practice, the number k  is 
chosen to obtain sufficiently accurate approximations of the 
patches. 

PCA provides an effective and simple way to approximate 
hyperspectral data. Consider the case in which the image f  cor-
responds to a scene with only a small number k d% m  of different 
types of spectra present across all pixels. In this case, it is clear 
that the spectral patches { }f:, :, m  will lie within a k -dimensional 
subspace of Rd dx y. PCA has been applied in this manner for 
hyperspectral image compression [1], classification, segmenta-
tion [2], and denoising under Gaussian [3] and Poisson noise 
models [4], [5]. Furthermore, PCA models can be estimated 
directly from a sufficiently large number of compressive mea-
surements given enough training data [6]. 

Sparse signal models are able to capture richer structure 
than PCA alone. Sparse signal models assume that the data vec-
tors { }f( )i  lie within (or close to) a union of k

p` j subspaces of 
dimension ,k  where each subspace is spanned by a different 
choice of k  functions from the dictionary .D  For instance, 
these models may rely on a sparsity-inducing orthogonal trans-
form D  to obtain coefficient vectors .D f( ) ( )i

T
ii =  In words, the 

coefficient vector has a small number k  of nonzero (or signifi-
cant) coefficients, and so we can represent the vector f( )i  exactly 
(or approximately) as the linear combination of k  components 
of the transform .D  Sparsity models can significantly outper-
form PCA models in terms of approximation fidelity and are 
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[Fig1]  An illustration of different partitions of a 
hyperspectral image into patches. The hyperspectral image 
spans two spatial dimensions ( ,x y ) and one spectral 
dimension (m ). 
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predominant in processing and compression of natural images. 
Examples of sparsity-inducing transforms include the discrete 
cosine and wavelet transforms. Such transforms can be applied 
straightforwardly to band patches, as they correspond to inten-
sity images for different light wavelengths. 

An additional contribution from the sparsity literature is the 
application of dictionary-learning algorithms to hyperspectral 
imaging [7]. These methods use a training data set of image 
patches to learn a dictionary D , which yields sparse (albeit 
high-dimensional) representations. However, in contrast to the 
transformations discussed earlier, the dictionaries learned here 
do not have orthogonal elements and require the application of 
custom algorithms for sparse approximation, described in 
“Sparse Recovery: Methods and Guarantees.” In recent years, 
sparsity has also been studied in contexts where the types of 
spectra (called endmembers) are known a priori and that each 
particular pixel is a linear combination of only a few of the end-
members [7], [8]. The sparse representation of the spectrum 
effectively identifies the component endmembers and their con-
centrations at each pixel, a process referred to as hyperspectral 
unmixing [8]. 

Various global sparsifying transforms, to be applied to the 
entire image rather than its patches, have also been proposed 
[9]–[11]. Unfortunately, the corresponding increase in dimension-
ality also increases the computational complexity of the transfor-
mation and approximation; furthermore, the improvements in 

approximation error are often not found to be significant enough 
to warrant the additional computational load. Nonetheless, it is 
possible to formulate global transformations with higher compu-
tational efficiency using combinations of patch transformations; a 
common example is to select a spectrum patch transform Dm  and 
a band patch transform D ,x y  and combine them using a Kro-
necker product D D D,x y7= m  [11]–[13]. PCA models for spectral 
patches can also be integrated with sparsity models for band 
patches through the use of Kronecker product matrices [11], [12]. 

SPARSE MODELS AND HYPERSPECTRAL IMAGERS
CS is the design of signal acquisition strategies that leverage 
sparse and low-dimensional models such as those described 
above to ensure accurate signal reconstruction or target detec-
tion with relatively few samples. The CS framework has received 
significant attention in the remote sensing community due to 
the complexities in hyperspectral imaging hardware designs, 
the high dimensionality of hyperspectral data sets, and the sig-
nificant degree of structure and redundancy present in hyper-
spectral images. In this section, we review baseline designs for 
hyperspectral imagers and describe several approaches for 
hyperspectral imaging. 

Conventional hyperspectral imagers must address a funda-
mental design problem: the transformation of a three-dimen-
sional (3-D) signal (in the spatial and spectral domain) into 
measurements obtained by optical sensing hardware, which is 

SPARSE RECOVERY: METHODS AND GUARANTEES
There are a number of algorithmic approaches to the problem 
of sparse signal recovery from compressive measurements. We 
will not provide a complete overview of the possible recovery 
algorithms here. Instead, we will merely provide a rough out-
line of what is possible. For further details, we refer the reader 
to [24] and references therein. 

Perhaps the most popular method for sparse recovery is  
1, -norm minimization (also known as basis pursuit or LASSO) 

	   ,arg min y ADsubject to1 2 #i i i e= -
i

t � (S1)

where ii1i i=/  denotes the sum of the magnitudes of the 
entries of i  and e  denotes the tolerable approximation distor-
tion. In addition to (S1), there are also a variety of greedy or 
iterative strategies, including state-of-the-art methods like com-
pressive sampling matching pursuit (CoSaMP) or iterative hard 
thresholding (IHT) [26], that treat the vector A yT  as a rough 
estimate of f  and obtain it  by iteratively identifying likely non-
zeros. In general, any standard sparse recovery algorithm can 
be applied to reconstruct a hyperspectral data cube from 
compressive measurements. However, as detailed in the main 
body of the article, physical characteristics of real-world com-
pressive hyperspectral compressive imagers should be consid-
ered when selecting and implementing such algorithms. 

Together with the development of efficient sparse recovery 
algorithms, there has also been significant recent progress on 
conditions that ensure that these algorithms obtain provably 
accurate estimates of the original signal f . One of the more  

 
common assumptions is that the sensing matrix A  satisfies the 
restricted isometry property (RIP), which essentially requires 
that Af f2 2.  for any k -sparse f  (i.e., for any f  such that 
we can write f Di=  where i  has at most k  nonzeros). 
Directly constructing a matrix A  that satisfies this property 
turns out to be rather difficult, but it is possible to show that if 
we construct A  at random, then with high probability it will 
satisfy the RIP. While a variety of random constructions exist, 
perhaps the simplest (and most relevant to practical compres-
sive hyperspectral imaging systems) is the so-called “Radem-
acher ensemble,” where each entry of A  is set to be either 

/ n1  or / n1-  with equal probability. Constructing A  in this 
fashion will, with high probability, lead to a matrix satisfying 
the RIP, provided that ( ( / ))logn O k d k=  [27]. Given such an A  
and measurements y Af w= + , both the approach in (S1) as 
well as methods like CoSaMP and IHT satisfy a performance 
guarantee of the form 

	 ,C w C
k
k

2 1 2 2
1#i i

i i
- +

-t � (S2)

where ki  is the best possible k -sparse approximation to the 
original i  and ,C C1 2  are absolute constants. From it , we can 
then obtain the estimate f Di=t t , and when D  is an orthonor-
mal basis we can translate this guarantee on it  into one on ft . 
Further discussion regarding what can be proven for more 
specific noise models and in the specific context of compres-
sive hyperspectral imagers is provided in the main body of 
the article.
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limited to two spatial dimensions. Thus, to design a hyperspec-
tral imager, one must establish a method to record this 3-D data 
using sensors that do not cover all three dimensions. For exam-
ple, one can use a one-dimensional (1-D) sensor (i.e., a spec-
trometer) to obtain a stream of spectrum measurements from 
the hyperspectral image one pixel at a time. Alternatively, one 
can use a two-dimensional (2-D) imaging sensor array to cap-
ture a single cut or section of the data cube at a time, which 
could be either a single band or an array of spectra for a single 
row/column of the spatial dimensions. In this section, we 
describe the most common designs of hyper spectral imagers as 
illustrated in Figure 2. 

Whiskbroom designs feature optics that focus on a specific 
spatial location and record either a sequence in time of voxel 
spectral measurements (using a tunable filter and a single sen-
sor) or an array of samples of the spectra (using a diffraction 
grating and a linear sensor array). The optical components in 
whiskbroom designs select a single pixel/spatial location at a 
time. Whiskbroom designs require a raster scan across the 
entire field of view and have higher capture latency than other 
designs; their dwell time on each specific pixel is reduced in 
comparison with other architectures with matching latency. 

Pushbroom designs feature optics that focus along one of 
the two spatial dimensions (using slit apertures, in comparison 
with pinhole apertures used by whiskbroom designs) and record 
a 2-D array of voxels corresponding to a spectral/1-D-spatial cut 
of the hyperspectral image (using a diffraction grating and a 2-D 
sensor array). The optical components are usually translated 
along one spatial dimension to scan the field of view. Although 
the latency of pushbroom designs is lower than that for whisk-
broom designs and their mechanical complexity is compara-
tively lower, both types of imagers introduce motion in the 
optics that can result in spatial distortion. 

Framing or staring designs feature optics similar to stan-
dard imaging cameras that capture 2-D images with additional 
optics that focus on a single wavelength or band of wavelengths 
using tunable filters. Their spatial resolution matches that of 
the sensor array, while spectral resolution is dependent on the 
tunable filter and latency requirements. The overall design of a 
staring camera is much simpler than its pushbroom and whisk-
broom counterparts. However, the latency due to the tuning of 
the optical filter is often longer than that of a pushbroom 
design’s scanning system. Furthermore, filtering significantly 
limits the quantity of light captured at the sensor. 

Compressive hyperspectral imagers address a common 
theme in the design descriptions above: the large number of 
samples in the spectral data cube results either in high acquisi-
tion latency or in significant requirements for the size of the 
sensor array in the imager. Thus, it can be desirable to reduce 
the number of measurements necessary for acquisition of the 
hyperspectral image at a target spatial and spectral resolution. 
Since one of the central goals in CS is to minimize the required 
number of measurements (see “Sparse Recovery: Methods and 
Guarantees” for more details), this has naturally led to its appli-
cation to hyperspectral imaging. In a compressive hyperspectral 

imager, we continue to model the imaging system as 
y Af w= +  where A  is an n d#  matrix, but here we will be 
specifically interested in the case where n  is as small as possible 
(and hopefully n d% ). 

In all of the cases below, the reduction in measurements 
is achieved through the multiplexing of the voxels of the data 
cube during acquisition through the optical path. The reduc-
tion in measurements can potentially translate to a reduc-
tion in acquisition latency and corresponding increase 
in reconstruction latency introduced by nonlinear sparse 
recovery algorithms. 

The single pixel camera [14]–[17], like whiskbroom designs, 
relies on a single spectrometer. However, the measurements do 
not focus on a single spatial location; rather, each measurement 
aggregates the intensities from a randomly selected subset of 
pixels of the image. Such selection is performed by program-
ming an optical modulator (such as a digital micromirror 
device) to reflect light from a subset of the pixels into the spec-
trometer while masking the light reflected from the rest of the 
pixels away from the spectrometer. Choosing this configuration 
for the optical modulator effectively causes the measurement at 
the single sensor at instance i  to correspond to the projection 
of each spectral band f:, :, m  onto a vector A ,s i , where A ,s i  is a 
binary 0/1 pattern encoding the masking sequence applied by 
the modulator. By stacking the m  vectors as rows of a matrix 
As , the resulting measurement matrix can be expressed as the 

Diffractor

Sensor Array
(a)

Spectrometer

x
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Spectrometer Array
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[Fig2]  Hyperspectral imager architectures. (a) A spectrometer 
consists of a diffraction element (grating or prism) and a 
sensor array that records light intensities at a variety of 
wavelengths. (b) Whiskbroom designs move the spectrometer 
spatially throughout the image, scanning one location at 
a time. (c) Pushbroom designs scan the image along a spatial 
direction using a spectrometer array. 
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Kronecker product A I As7= , where I  is the identity matrix; 
this measurement operator acts separately on each band. 

The compression achieved by the single pixel camera can 
significantly reduce the acquisition latency compared to whisk-
broom designs; however, depending on the number of measure-
ments required for recovery (which is dependent on the 
complexity of the scene), this design may not outperform push-
broom designs in terms of latency. However, the single-picture 
architecture can be modified to pushbroom or whiskbroom 
designs in a straightforward fashion [14]. The spatial resolution 
of this camera design is given by the resolution of the spatial 
light modulator, while the spectral resolution of this architec-
ture is given by the characteristics of the single spectrometer. 

The coded aperture snapshot spectral imager (CASSI) [18] 
employs a combination of diffraction prisms, coded apertures, 
and an optical sensor array to perform multiplexing of the vox-
els in the hyperspectral image. A dispersive element shears the 
hyperspectral data cube by enacting a distinct spatial transla-
tion for the light field at each wavelength; a coded aperture 
then masks certain pixels (spatial locations) of the sheared 
data cube, and a second dispersive element reverses the shear-
ing caused by the spatial translation to result in a modified 
hyperspectral image with masked voxels. This masked data 
cube is acquired using an optical sensor that effectively flat-
tens the hyperspectral image into a single snapshot. The 
imager is a completely static, single-shot design, resulting in a 
mechanically robust and inexpensive system. 

The spatial resolution of this design is governed by the sen-
sor array and the coded aperture (which should have matching 
resolutions), while the spectral resolution is governed by the 
degree of dispersion and feature size of the coded aperture.  
A simplified version of CASSI requires only a single dispersive 
element and captures the sheared data cube but requires the 
sensor array size to be ( )d d dx y# + m  [19]. This linear acquisi-
tion system can be effectively represented by a highly structured 

( )d d d d d dx y x y#+ m m  matrix with binary entries. CASSI is dis-
cussed in additional detail in a companion article in this issue 
[20], including coded aperture design and additional hyperspec-
tral image modeling. 

Complementary metal–oxide–semiconductor (CMOS)-
based CS approaches have recently emerged for optical imag-
ing [11], [21], [22]. In addition to the aforementioned 
optics-based designs, it is possible to combine these CMOS-
based approaches with standard pushbroom or framing designs 
to reduce the number of measurements taken with respect to 
the number of voxels. However, the resulting schemes still 
require each pixel of the image to be acquired by the CMOS 
device, and so there is no improvement in properties such as 
latency, resolution, etc. over those of the CMOS device. Exist-
ing implementations of compressive optical sensor arrays per-
form the computation of the required projections using 
metal-oxide-semiconductor electronics and are based on ran-
dom convolution [22], separable transformations [21], block-
based transforms [22], structured incoherent transforms like 
noiselets [11], and randomized integration via Sigma-Delta 

analog-to-digital converters (ADCs) [23]. The resulting 
measurement matrices are expressed in terms of a Kronecker 
product I ACMOS7 , where ACMOS  denotes the measurement 
operator implemented by the CMOS design and the Kronecker 
product represents the replication of the measurement process 
among the snapshots required by the particular camera design 
(e.g., across spectral bands for a staring camera or across shifts 
in a spatial dimension for a pushbroom camera). 

PERFORMANCE LIMITS AND TRADEOFFS FOR 
RECONSTRUCTING HYPERSPECTRAL IMAGES FROM 
COMPRESSIVE MEASUREMENTS
The compressive hyperspectral imagers described above enable 
a range of design tradeoffs among noise performance, temporal/
spatial/spectral resolution, and dynamic range. These tradeoffs 
take different forms depending upon what assumptions we can 
reasonably make about the sensing matrix A, the sparse or low-
dimesional structure of the hyperspectral image f , and the dis-
tribution of the noise w. We will first consider the classical CS 
setting with white Gaussian noise, and then discuss effects such 
as nonnegativity, quantization, and photon-counting noise. 

Limits of CS recovery in Gaussian noise
We begin with the simple observation model y Af w= +  but 
where the noise w, instead of being arbitrary, is independent 
and identically distributed (i.i.d.) Gaussian with mean zero 
and variance 2v . This leads to slightly different results than 
those described in “Sparse Recovery: Methods and Guaran-
tees.” Specifically, since the noise w  is now random, we con-
sider the expected recovery error. While we could directly 
apply (S2) and replace w 2  with v[ ]w nE 2 = , it is possi-
ble to get a somewhat tighter result (that does not increase if 
we take more measurements). In particular, under the 
assumption that Af f2 2. b , one can show that most stan-
dard sparse recovery algorithms yield an estimate satisfying a 
guarantee of the form 

	 ,
log

C
k d

C
k

E
k

2 1 2
1#i i

b
v

i i
- +

-
lt8 B 	 (1)

where C1l  and C2  are absolute constants. Note that we have 
replaced the standard RIP assumption (that Af f2 2. ) with 
the more relaxed assumption that Af f2 2. b  for some 
constant b , which is equivalent to saying that /A b  satisfies the 
RIP. This can be quite useful since the RIP induces a particular 
scaling of the matrix A  (unit-norm columns), while other scal-
ings of A  may be more natural in practice. Naturally, either an 
increase in b  or a decrease in v (which are essentially equiva-
lent) leads to improved estimation of i . 

One might wonder whether the first term in (1), which rep-
resents the impact of the noise w  on the recovery error, can be 
substantially improved. It turns out that this dependence is 
essentially optimal. In fact, one can show that given the free-
dom to pick any matrix A  (not necessarily satisfying the RIP, 
but with the same energy as above, i.e., A dF

2 b= ) and use any 
recovery procedure, there is no method that can improve on (1) 
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by more than a constant factor [28]. 
In other words, when it comes to 
sensing a sparse signal in the pres-
ence of Gaussian noise, standard CS 
algorithms are operating at the 
limit of what any system could 
achieve given a fixed set of nonadap-
tive, linear measurements (subject 
to some energy/signal-to-noise ratio 
(SNR) constraint on the sensing 
system A). Moreover, at least if we 
wish to have an error bound that holds for arbitrary sparse ,f we 
cannot substantially improve this situation even if we pick the 
rows of this sensing matrix A  in a sequential or adaptive fash-
ion [29], [30]. 

While the bulk of the CS literature has focused on the 
cases of bounded noise, as in (S2), or white Gaussian noise, 
as in (1), these may not necessarily be the most natural 
model in the context of hyperspectral imaging. In particular, 
Gaussian noise is not a particularly realistic model for pho-
ton noise, which arises often as limited available light (con-
strained by the aperture and latency requirements) is spread 
across a large number of pixels and spectral bands. We will 
address this more realistic noise model next. But first, we 
discuss an important difference between the standard CS 
framework and the problem of compressive hyperspectral 
imaging that arises due to the fact that our measurements 
are constrained to be nonnegative. 

Effects of Nonnegative Matrices  
and Observations
Consider the mechanism described in “Sparse Recovery: Meth-
ods and Guarantees” for constructing the sensing matrix A, 
where we set each element of A  to be / n1!  with equal prob-
ability. Unfortunately, in the context of linear optical imaging, 
such a sensing matrix cannot be implemented. In particular, we 
can think of A  as describing how light is propagated through a 
linear optical system, so that A ,i j  denotes the fraction of the 
total amount of light from the jth voxel in the hyperspectral 
image that contributes to the ith measurement. Clearly, the 
fractions cannot have negative values, so A 0,i j $ . Further-
more, the total amount of light sensed cannot be greater than 
the amount of light incident upon the system (i.e., photon flux 
must be preserved); mathematically, this has several conse-
quences. Most generally, this means that if ja  denotes the jth 
column of A, then we must have ja 1 1# , since the entries in 
aj  correspond to how the light from voxel jf  is distributed 
across the detector array. This constraint ensures that the total 
photon flux is preserved, i.e., Af f1 1#  for all f  (where f , 
denoting the intensity of light at different locations and wave-
lengths, also consists solely of nonnegative elements). In some 
imaging systems, there are additional constraints on the entries 
A ,i j. For instance, in the single pixel camera architecture, if we 
assume that each measurement is allocated an equal amount of 
time, then the maximum possible value for A ,i j is /n1  (since 

only /n1  of the total amount of 
light is available during each mea-
surement period). 

These restrictions lead to a 
small gap between the hyperspec-
tral imaging setting and the stan-
dard theoretical treatment of CS. 
While it is possible to develop a spe-
cially tailored theory for certain 
classes of matrices with nonnega-
tive entries, and ultimately obtain 

bounds similar to (S2) or (1), it is perhaps more instructive to 
consider how to relate the desired RIP matrix A  with / n1!  
entries to a physically realizable matrix Au  with entries of zero 
or /n1  (with equal probability). Specifically, one can imagine 
constructing Au  by adding / n1  to each element of A  to make 
each element either zero or / n2 , and then rescaling by 
/ ( )n1 2  to obtain a matrix with entries of zero or /n1 . In the 

i.i.d. Gaussian measurement noise model from above, the 
impact of this shifting and renormalization is that we can write 
our measurements as 

	 ;y Af w
n

Af
n
f

w
2 2

1= + = + +u 	 (2)

that is, we observe a scaled version of what we would ideally like 
to measure (Af ) plus a constant offset proportional to the total 
amount of light in the scene. The constant offset introduces 
some unique and nontrivial challenges. As we describe below, it 
has a significant impact on the noise variance in photon-limited 
settings. However, even in photon-rich settings, where we may 
accurately adopt a Gaussian noise assumption, the constant off-
set may cause challenges. 

First, consider recovering f  from y  using the standard 
sparse recovery methods described in “Sparse Recovery: Meth-
ods and Guarantees.” The nonnegativity of A  can lead to some 
important algorithmic challenges when the recovery algorithm 
has been specifically designed under the assumption that A  sat-
isfies the RIP. In particular, one of the consequences of the RIP 
is that A AT  acts like an isometry when applied to sparse vec-
tors. This fact is explicitly exploited by greedy algorithms that 
make decisions based on A yT , and sometimes implicitly 
exploited by some 1, -minimization solvers to speed conver-
gence. Unfortunately, this is no longer the case when the entries 
of A  are nonnegative, since in this case all the columns of A  
are correlated with each other. For the algorithms that rely on 
this fact, simply plugging y  and A into the algorithm without 
any modifications will yield inaccurate reconstructions and/or 
slow convergence. 

Fortunately, in many cases it is possible to sidestep this 
issue. For example, in the context of (2), if we can use the  
data y  to accurately estimate f 1  (or can directly obtain  
an estimate of this value in advance), then we can set 

/ ( )y y f n21= -l  and then feed /y A n2andl ^ h into stan-
dard sparse recovery methods. This fix can significantly improve 
the speed and accuracy of reconstruction (although this 

While the bulk of the  
Compressive sensing literature 

has focused on the cases of 
bounded or Gaussian noise,  
these may not necessarily  

be the most natural  
models in the context  

of hyperspectral imaging.
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approach can have significant noise implications in the low-
light regime; see [31] for details). 

Alternatively, it is also often relatively straightforward to 
modify the algorithm to rely less heavily on the RIP assump-
tion. For example, greedy algorithms can be modified by replac-
ing AT  with the pseudoinverse ( )A A AAT T 1=@ - . More generally, 
this can be viewed as a special case of preconditioning the data 
y , which is shown to significantly improve reconstruction 
accuracy [32], [33]. Note that it is also possible to modify stan-
dard sparse recovery methods to enforce nonnegativity in f  as 
well [34]. 

Effects of Quantization and dynamic range
A more significant challenge posed by nonnegativity arises due 
to the fact that physical systems must ultimately also quantize 
the measurements y. Typically, a quantizer will have a fixed 
number of quantization levels arranged to cover the entire 
range of different values that elements of y  may take. When 
this range is precisely known in advance, each quantization 
level corresponds to a small interval of different values, yielding 
accurate measurements. In the context of the model in (2), 
however, note that we are actually trying to quantize small fluc-
tuations (determined by Af ) around a constant offset 

(determined by f 1) that will, in general, be unknown a priori. 
This poses a challenge when using a traditional quantizer since, 
if the range of the quantizer is set to be too small, the elements 
of y  may fall outside the range of the quantizer, but if the range 
is too large, the small fluctuations determined by Af  will fail to 
use the full quantization range and the system will lose preci-
sion. This is especially problematic when using a quantizer with 
low bit depth. Thus, in the context of compressive hyperspectral 
imaging, quantization noise can be a significant source of error. 
A toy example illustrating this effect is presented in Figure 3, 
which demonstrates the challenge associated with designing a 
single mechanism for uniformly quantizing a signal with an 
unknown intensity or brightness, and hence an unknown con-
stant offset. 

We would like to be able to address this challenge in an 
automatic fashion, without resorting to manual tuning of the 
quantizer range for each scene of interest. One approach is to 
simply use very high bit-depth quantizers, but this can be 
costly and ultimately fails to fully address the challenge for 
broad ranges of brightnesses. A more robust approach is to 
compensate for the offset in hardware before quantizing [23], 
[35]. While this requires specialized sensor circuitry and can 
be somewhat costly, when designing a system that will be used 
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[Fig3]  An illustration of dynamic range and quantization challenges in compressive hyperspectral imaging. In all plots, the horizontal 
axis is the sample index and the vertical axis is the signal intensity. (a) The depiction of the same sparse signal at three different 
intensity levels (brightnesses). (b) The depiction of unquantized compressive measurements of the signals on the left using the sensing 
matrix construction in (2). (c) The quantized measurements, rescaled for easy visual comparison. We apply the same 4-bit uniform 
quantizer, designed to quantize values between zero and 30, to each set of measurements. Clearly designing a quantizer capable of 
quantizing measurements from bright sources limits the accuracy of quantized measurements at lower intensities. 
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to image scenes of widely varying 
brightness the improvement in 
performance may be worth this 
increased cost. 

Yet another approach to this 
problem relies on some of the 
rather unique properties of ran-
domized measurements. In particu-
lar, the randomized measurements typically used in CS are 
democratic, generally meaning that they each contain roughly 
the same amount of information, and hence by taking addi-
tional measurements we can be robust to having large errors 
(or even erasures) on a subset of the measurements [36]. This 
has a number of consequences in the context of quantization. 
First, while classical systems typically try to set the quantizer 
range to ensure that saturation occurs with extremely low prob-
ability, it has been shown empirically that in CS systems one 
can obtain improved performance by allowing a nontrivial num-
ber of saturation events (e.g., on the order of 5–10%) [36]. Sec-
ond, it allows for a particularly elegant method for 
automatically adjusting a quantizer to mitigate the problem 
described above. In particular, if the measurements are obtained 
sequentially in time (as in the single pixel camera architecture) 
then one can perform automatic gain control to dynamically 
adjust the prequantization gain to ensure that some desired 
fraction of the measurements saturate the quantizer (on both 
ends of the quantization range). This approach ensures that the 
full range of the quantizer is exploited without the need to man-
ually measure the offset in (2), but it has the drawback of 
requiring a certain amount of “burn-in time” before stabilizing. 

Finally, it is worth noting that as long as we can compensate 
for the unknown constant offset in (2), CS actually has the 
potential to result in significant gains over noncompressive sys-
tems in terms of quantization error and dynamic range. In par-
ticular, in a noncompressive system, we typically would 
quantize each voxel using the same fixed quantization range, 
but voxel intensity can vary dramatically both spatially and 
across spectra. This causes saturation and loss of detail in bright 
and dark regions of the data cube. In contrast, by combining 
random combinations of voxels into a single measurement, com-
pressive systems dramatically reduce the dynamic range over 
which the measurements that we must quantize can fluctuate. 
This has been studied in the context of ADCs in [37] and can be 
seen by comparing Figure 3(a) and (b). For a given bit depth, this 
reduced range can allow for reduced quantization error in the 
compressive case. Exploiting this, along with the fact that by tak-
ing fewer measurements in a given time window we can use a 
lower-rate quantizer with a higher bit depth, there is potential for 
compressive systems to be more effective at mitigating quantiza-
tion error than traditional systems. 

effect of Photon-counting noise
Up to this point, we have considered the impact of noise, non-
negativity, and quantization but only when the noise vector w  
is signal independent. However, in many hyperspectral imaging 

contexts we are in fact photon lim-
ited, so that the total number of 
photons detected by our system is 
small relative to the desired resolu-
tion. In photon-limited settings, we 
may model the observations as 
obeying a Poisson distribution, 
which has a mean equal to its vari-

ance. This effect introduces serious limitations. In particular, in 
(2) we saw that the signal of interest was added to a constant 
offset. Since the mean and variance of Poisson noise are equal, 
this offset plays a critical role in controlling the noise variance. 

Some of the major theoretical challenges associated with the 
application of CS to linear optical systems in the presence of 
Poisson noise have been addressed in the recent literature [38], 
[39]. These works considered two novel sensing paradigms, 
based on either pseudorandom dense sensing matrices (akin to 
the shifted and scaled dense sensing matrix described above) or 
expander graph constructions, both of which satisfy the non-
negativity and flux preservation constraints. In these settings, 
for a fixed signal intensity (i.e., fixed f 1 ), the error bound 
actually grows linearly with the number of measurements or 
sensors, n , since a limited amount of light is spread across an 
increasing number of detectors, each with a decreasing SNR. In 
other words, keeping n  as small as possible (a central goal in 
CS) helps maximize SNR and reconstruction accuracy in a way 
not reflected in conventional CS bounds. Thus, incorporating 
real-world constraints into the measurement model has a sig-
nificant impact on the expected performance of a compressive 
hyperspectral imager, and these constraints should be consid-
ered carefully throughout any design process. 

effect of Imperfect system models
A major challenge in the design of compressive hyperspectral 
imagers is accurate knowledge of the projection operator A . 
While we might design a system to have a particular sensing 
matrix A , calibration errors and optical effects will always intro-
duce inaccuracies. Even if we had the ability to estimate A  pre-
cisely, there are settings where using an approximation of A  has 
advantages; for instance, when we can approximately compute Af  
using fast Fourier transforms, conducting sparse recovery is much 
faster than with a dense matrix representation of A. 

When we run a sparse recovery algorithm with an inaccurate 
sensing matrix A, it corresponds to the observation model 

,y Af Ef wi = + +  where Ef  represents the difference between 
the true projections collected by hyperspectral imager and the 
assumed projections in A. The term Ef  can be thought of as sig-
nal-dependent noise. Analysis of the theoretical ramifications of 
these kinds of errors allow the designers of spectral imagers to 
accurately assess tradeoffs between accurate calibration of A  and 
computational efficiency [40]. 

Additional tradeoffs
One of the advantages of compressive methods for hyperspectral 
imaging is that they also enable a range of new design tradeoffs. 
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For example, the single pixel camera 
architecture allows us to achieve 
high spectral resolution while trad-
ing off between spatial resolution and 
latency by adjusting the resolution of 
the patterns used by the optical mod-
ulator (a higher-resolution pattern 
will also require a larger total num-
ber of measurements, increasing spa-
tial resolution at a cost of higher 
latency). Alternatively, the CASSI system allows for low latency 
while trading off between spatial and spectral resolution. For all 
architectures, however, we have a fundamental tradeoff between 
resolution and the SNR. If we fix the latency (i.e., the total acquisi-
tion time, and hence the total amount of light incident upon a 
hyperspectral imager), then increasing either spatial or spectral 
resolution means decreasing the amount of light measured for 
each voxel in the hyperspectral image. As resolution increases, 
measurements become more photon limited and, therefore, noisy.

HYPERSPECTRAL TARGET DETECTION  
FROM compressive MEASUREMENTS
In addition to enabling the design of new hyperspectral imaging 
hardware and acquisition methods, sparsity and other low-
dimensional structures provide new ways to efficiently process 
the data produced by these new sensors, in some cases without 
ever explicitly estimating the high-dimensional hyperspectral 
image [41], [42]. 

In this section, we address the question of whether compres-
sive measurements of hyperspectral images of the form 
y Af w= +  can be used to accurately and efficiently infer 
whether f  belongs to some target class without estimating f  
directly. As a motivating example, consider the CASSI system 
discussed earlier: it collects one coded projection of each spec-
trum in the scene. One projection per spectrum is sufficient for 
reconstructing spatially homogeneous spectral images, since 
projections of neighboring locations can be combined to infer 
each spectrum. Significantly more projections are required for 
detecting targets of unknown strengths without the benefit of 
spatial homogeneity. One might ask how several such systems 
can be used in parallel to reliably detect spectral targets and 
anomalies from different coded projections. 

Hyperspectral imaging introduces several unique target 
detection challenges. For instance, in remote sensing applica-
tions each measured spectrum reflects the mixing of multiple 
spectra across a relatively large physical area—so that the 
spectrum of interest may be mixed with other spectra in 
unknown proportions. A mixed pixel model accounts for such 
interferences by modeling every spatial location as either a tar-
get material corrupted by background, or just background [43]. 
This background may be modeled using a multivariate Gauss-
ian distribution: ~ ( , )b 0N bR , so that we have mixed observa-
tions according to 

	 ( ) .y A f b w y Abm = + + = + 	 (3)

Thus, in the mixed pixel setting our 
ideal compressive observations are 
contaminated by Ab , which sug-
gests that the statistics of b  must 
be considered when choosing A . 

One approach to this challenge 
is to apply a prewhitening filter 
P Rn n! #  to the mixed observa-
tions ym , with the goal of mitigat-
ing the effects of the background 

b . The prewhited observations can be expressed as 
,z Py Af wm= = +u u  where wu  is white Gaussian noise with vari-

ance one and A PA=u . This suggests choosing the hyperspec-
tral camera optical design, described by A , in a way that 
depends on the background covariance bR , so that the prod-
uct PA  facilitates accurate compressive signal classification 
and detection (e.g., a random n d#  matrix with i.i.d. ( , )0 1N  
entries, commonly considered in the CS literature) [44].  
This approach naturally provides fundamental insight  
into the robustness of compressive target detection to back-
ground contamination. 

Target dictionaries
The goal of hyperspectral target detection is, in the context of 
mixed observations, to determine whether f 0=  (i.e., no target 
and only background is present) or which f  in a dictionary of 
target spectral signatures D  corresponds to the observations. 

Theoretical performance bounds provide key insight into 
how error rates scale with the number of measurements col-
lected, the spectral resolution of targets, the amount of back-
ground signal present, the SNR, and properties of D . In 
particular, let t  denote the minimum Euclidean distance 
between any two target spectra in the target class D , and let 
| |D  denote the size of the dictionary. Performance can be char-
acterized in terms of a method’s positive false discovery rate 
(pFDR), which measures the fraction of declared targets that are 
false alarms and is a useful metric in multiple testing scenarios 
such as this. 

A target detection method based on a nearest-neighbor 
approach applied to prewhited measurements z  yields the 
bound 

	 | | | ,|O n
1 1 4

1pFDR
D D

/n2 2 1
t

= + -

-

e o;= E G 	 (4)

which decays with the number of measurements n  and the 
size of the target dictionary, but increases with t . Thus intro-
ducing new candidate targets which are very similar to exist-
ing candidate targets can significantly deteriorate 
performance, regardless of the spectral resolution d . Experi-
mental results show that using these theoretically supported 
designs of A , which account for background contamination 
and target dictionary properties, yields significantly better tar-
get detection accuracy than simply measuring low-resolution 
hyperspectral images [44]. 
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Target manifolds
The fixed-dictionary hyperspectral target detection problem for-
mulation above is accurate if the signals in the dictionary are 
faithful representations of the target signals that we observe. In 
reality, however, the target signals will differ from those in the 
dictionary due to the differences in the experimental conditions 
under which they are collected. For instance, in remote sensing 
applications, the observed spectrum of a material will not match 
the reference spectrum observed in a laboratory due to differ-
ences in atmospheric and illumination conditions. In this case, 
one could reasonably model the target signals observed under 
different experimental conditions as lying in a low-dimensional 
submanifold of the high-dimensional ambient signal space; this 
has been shown to be an accurate model for hyperspectral 
images in [45]. 

Thus, in many practical settings, rather than differentiate 
among a finite collection of candidate spectra, we must differen-
tiate among a collection of candidate target manifolds. Target 
detection in this setting has two key components: 1) a search 
for the closest point in each candidate target manifold to the 
observation, followed by 2) a minimum distance-based detection 
step controlled by the desired false alarm probability. This 
approach has been dubbed smashed filtering in [41]. CS theory 
and methods yield insights into both these steps. Tradeoffs and 
performance bounds for the second step are described in the 
previous section. Furthermore, it is now known that the ran-
domized projections common in CS also preserve the structure 
of the manifold; this can be shown by adapting the earlier John-
son–Lindenstrauss lemma argument to a sufficiently dense 
sampling of the manifold [46]. This theoretical result implies 
that the first step of the smashed filter can be computed directly 
in the compressive domain.  

Anomaly detection
While in many settings target dictionaries can be formed in a 
laboratory or using “ground truth” data (usually collected at 
considerable expense and time), at times target dictionaries 
are simply unavailable. In such settings, one might be inter-
ested in detecting objects not in the dictionary. Here, the tar-
get signals of interest are anomalous and are not known a 
priori to the user. The target detection methods discussed 
above can be extended to anomaly detection by exploiting the 
distance preservation property of the sensing matrix A  to 
detect anomalous targets from projection measurements, as 
detailed in [44], [47], and [48]. 

CONCLUSIONS AND FUTURE DIRECTIONS
Due to the enormous size of hyperspectral images with high 
spatial and spectral resolution, approaches that enable efficient 
data collection, signal reconstruction, and target detection tasks 
have enormous practical potential. The good news is that typical 
hyperspectral images have significant structure that can be 
exploited within the context of sparse models and CS. Armed 
with such models, we can engineer novel compressive sensors 
and reconstruction algorithms. 

On the surface, the application of the CS theory and algo-
rithms to hyperspectral imaging appears very promising. How-
ever, one of the central themes of this article is that these 
theories and methods cannot be applied blindly to this applica-
tion arena. For a compressive hyperspectral imaging design to 
be truly effective, it must account for the physical constraints 
of the measurements system, use appropriate quantization 
methods, accommodate realistic noise models (including pho-
ton noise, background signal effects, and calibration errors), 
and use reconstruction algorithms that specifically account 
for all of these effects. None of these aspects can be considered 
in isolation, and any system design that ignores these issues 
has limited potential. 

Despite these caveats, researchers are pushing the boundar-
ies of our collective knowledge of how to exploit signal struc-
ture for improved sensing and inference. For example, while 
sequentially selecting the rows of A  in an adaptive fashion is of 
limited benefit in some of the hardest possible sparse recovery 
problems [29], [30], in high SNR regimes or settings where we 
have structured or group sparsity (common in hyperspectral 
imaging), adaptivity can potentially yield significant gains. 
Exploring the applications of these ideas to practical imaging 
systems is an important area of ongoing research. 
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