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ABSTRACT

Compressive sensing (CS) exploits the sparsity present in
many signals to reduce the number of measurements needed
for digital acquisition. With this reduction would come, in
theory, commensurate reductions in the size, weight, power
consumption, and/or monetary cost of both signal sensors and
any associated communication links. This paper examines the
use of CS in environments where the input signal takes the
form of a sparse combination of narrowband signals of un-
known frequencies that appear anywhere in a broad spectral
band. We formulate the problem statement for such a receiver
and establish a reasonable set of requirements that a receiver
should meet to be practically useful. The performance of a
CS receiver for this application is then evaluated in two ways:
using the applicable (and still evolving) CS theory and using
a set of computer simulations carefully constructed to com-
pare the CS receiver against the performance expected from
a conventional implementation. This sets the stage for work
in a sequel that will use these results to produce comparisons
of the size, weight, and power consumption of a CS receiver
against an exemplar of a conventional design.

1. INTRODUCTION

Compressive sensing (CS) [1–3] exploits the sparsity present
in many signals to reduce the number of measurements
needed for acqusition. It has been shown theoretically that,
under the right set of circumstances, CS can dramatically
reduce the number of measurements needed to detect, char-
acterize, and/or extract signals, and therefore can reduce by
the same factor the storage and/or transmission rate needed
to handle the signal at the sensing point. Conversely, signals
with much larger bandwidths could be accepted by existing
acquisition systems. If these reductions were found to pro-
portionally reduce the size, weight, and power consumption
(SWAP) and cost of operational signal acquisition systems,
then the practical impact could be transformative.

This paper examines the potential practicality of CS to
build signal acquisition receivers for the specific, but impor-
tant, case where the receiver’s input signal takes the form of
a sparse combination of narrowband signals of unknown fre-
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Fig. 1. A wideband signal acquisition receiver.

quencies that can appear anywhere in a broad spectral band.
Our objective here is to examine the specific application of
the acquisition receiver, thus providing the opportunity to test
the robustness of CS techniques to imperfect match with its
underlying theoretical assumptions.

Section 2 formulates the problem statement for the signal
receiver and establishes a set of requirements that a receiver
should meet to be highly attractive for practical use. Sec-
tion 3 applies the existing CS theory to determine how well a
CS-based receiver should work in this case, while Section 4
presents the interim results of a set of simulation-based eval-
uations designed to measure the expected performance of a
CS-based receiver in comparison with theory and with a con-
ventional receiver design. These results are discussed in Sec-
tion 5, and recommendations for additional study and investi-
gation appear in Section 6.

2. PUTATIVE REQUIREMENTS

Our objective in this paper is to explore the attributes and ca-
pabilities of CS by examining how it might be applied to meet
a specific set of requirements. The particular application ad-
dressed is a wideband radio frequency (RF) signal acquisition
receiver, a device commonly used in both commercial and
military systems to monitor a wide band of radio frequen-
cies for the purposes of (i) detecting the presence of signals,
(ii) characterizing them, and, where appropriate, (iii) extract-
ing a specific signal from the several that might be present
within that band. A high-level system diagram incorporating
such a receiver is shown in Figure 1. While many types of
acquisition receivers have been designed, built, and sold over
the years, we will choose here a set of putative requirements
for such a receiver so that comparisons and analysis can be
done. The reader is free to, and in fact invited to, choose
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Table 1. A putative set of specifications for an advanced RF
signal acquisition receiver.

Instantaneous bandwidth B 500 MHz
Instantaneous dynamic range D 96 dB
SNR degradation/noise figure NF 12 dB
Maximum signal bandwidth W 200 kHz

other operational parameters and repeat the comparison.
The attributes that characterize an acquisition receiver

typically fall into two categories: technical specifications —
such as instantaneous bandwidth — and various “costs”—
such as SWAP and monetary cost. In this paper we will
address only the few most important technical specifications:

• Instantaneous bandwidth — the RF range over which
signals will be accepted by the receiver and handled
with their full fidelity;

• Instantaneous dynamic range — the ratio of the max-
imum to minimum signal power level with which re-
ceived signals can be handled with full fidelity;

• SNR degradation — sometimes termed “noise figure”,
a measure of the tendency of the receiver to lower the
input signal-to-noise ratio (SNR) of a received signal,
usually measured in dB. The root cause of this degrada-
tion has historically depended on the technology used
to build the receiver.

• Maximum signal bandwidth — the maximum com-
bined bandwidth of the constituent signals in the acqui-
sition bandwidth of the receiver

These requirements must be met subject to many constraints,
including, at least, SWAP and monetary cost. There are
also typically system-level constraints, such as the bandwidth
available for communicating what the receiver has discovered
to other assets or a central processing facility.

Historically RF signal acquisition receivers were first
built using purely analog technology, then, more recently,
with analog technology conditioning the signal environment
sufficiently to employ a high-rate analog-to-digital converter
(ADC) followed by digital processing, storage, and/or trans-
mission. When and if it can be applied, CS offers the promise
to (i) increase the instantaneous input bandwidth, (ii) lower
all of the cost attributes, and (iii) move the computationally
intensive portions of the acquisition process away from the
sensor and toward a central processing facility.

For the purposes of the comparisons to be made in this
paper, we will assume a set of requirements, listed in Table 1,
for an acquisition system that are quite audacious and would
stress, at the least, conventional implementations. To meet
the bandwidth and dynamic range requirements, conventional
designs would typically be forced to use techniques based on
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Fig. 2. The “processing asymmetry” assumed in a CS signal
acquisition receiver.

scanning narrowband receivers across the band. If CS-based
systems can be shown to work in such cases without the need
for scanning at the receiver, then they would have broad ap-
plication.

We make two last, but important, assumptions:

1. Signal sparsity — In order to meet the first-order as-
sumption of all CS techniques that the input signal be
sparse in some way, we assume that the sum of the
bandwidths of all signals present in the full acquisition
band, which we denote W , is no more than 200 kHz.
Note that this is significantly smaller than the instanta-
neous bandwidth B of 500 MHz. Thus we are assum-
ing that the RF input to the receiver is quite sparse in
the frequency domain (the instantaneous bandwidth is
only 1/2500 occupied in this case). While inputs with
this level of spectral sparsity are not common, they ex-
ist often enough to make a solution useful if it can be
found. To test the impact of the sparsity assumption for
this application, we will evaluate the performance, both
theoretical and in simulation, for both the case where
the input is noise-free, in which case the input signal is
truly sparse, and in the more practical case where the
input is contaminated with additive white noise.

2. Processing asymmetry — Our presumption is that there
is no cost to the computation done to process the out-
put of the compressive sensor. Our objective is to min-
imize all costs, including the transmission bandwidth
between the sensor and the processor, and, for the pur-
poses of this paper, we are prepared to do as much
processing as needed to detect, characterize, and/or re-
cover the signal of interest. This assumed separation of
functions is illustrated in Figure 2.

3. COMPRESSIVE SENSING AND ITS
APPLICATION TO WIDEBAND RADIO RECEIVERS

3.1. CS theory

In laying out the putative requirements in Section 2, we as-
sumed that the real-valued, continuous-time signal of interest,
which we will denote by x(t), has instantaneous bandwidthB
and maximum signal bandwidth W . Thus, each segment of
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x(t) of duration T = 1 seconds has the Fourier representation

x(t) = Ψ(α) =
2B−1∑
k=0

αkψk(t), (1)

where ψk(t) = ej2πkt/(2B) are the Fourier basis functions
and where α = [α0, α1, . . . , α2B−1] is a complex-valued
vector of length 2B that has 2W nonzeros corresponding to
the active frequencies of the constituent signals in the acquisi-
tion bandwidth B.1 For the moment, we assume that αk = 0
exactly outside of these 2W nonzeros, in which case we say
that the vector α is 2W -sparse. Finally, note that while we
focus on Fourier-sparse signals in this paper, the CS theory is
general and extends to signals sparse in arbitrary bases.

The Shannon-Nyquist sampling theorem tells us that 2B
uniform samples of x(t) per T = 1 second contain all of
the information in x(t). Our goal in CS is to do better: to
acquire x(t) via a set of 2B/Q measurements with Q ≥ 1 as
large as possible. The subsampling factor Q strongly affects
the various costs (i.e., SWAP and monetary cost) described in
Section 2. Observe that if the locations of the 2W non-zeros
of α are known a priori, then by filtering and decimation, we
could driveQ as large asQf = B/W . Our aim is to show that
CS-based techniques will enable us to acquire x(t) via a set
of 2B/Q fixed, nonadaptive, linear measurements that require
no a priori knowledge of the locations of the non-zeros of α,
with Q nearly as large as Qf .

Towards this end, we take the measurements

y = Φ(x(t)) + e, (2)

where Φ is a linear measurement operator that maps continuous-
time functions defined on the time interval t ∈ [0, 1] to a
length 2B/Q vector y of measurements, and where e is a
length 2B/Q vector that represents measurement noise gen-
erated by the acquisition hardware. The central theoretical
question in CS is how to design the measurement operator Φ
to ensure that we will be able to recover the signal x(t) from
the measurements y. While there are many approaches to
solving this problem, the most common method is to split this
question into two parts: (i) What properties of Φ will ensure
that there exists some algorithm that can recover x(t) from
y? and (ii) What algorithms can perform this recovery in an
efficient manner?

The answer to the first question is rather intuitive. While
alternative properties have been studied, the majority of the
work in CS assumes that the measurement operator Φ satis-
fies the so-called restricted isometry property (RIP) [4]. In
our setting, where x(t) has a 2W -sparse representation with
respect to the basis Ψ, the RIP requires that there exists a

1We set the segment-length to T = 1 second for notational convenience;
for snippets of other lengths one can merely replace B and W below with
BT and WT , mutatis mutandis.

constant δ ∈ (0, 1) such that

√
1− δ ≤ ‖Φ(Ψ(α))−Φ(Ψ(β))‖2

‖α− β‖2
≤
√

1 + δ, (3)

holds for all 2W -sparse α and β. In words, ΦΨ preserves
the Euclidean distance between vectors that are 2W -sparse.
Intuitively, the RIP means that for any particular set of mea-
surements y, there exists at most one possible 2W -sparse sig-
nal consistent with these measurements, since if there were
two distinct 2W -sparse signals that mapped to the same set of
measurements, then this would violate the lower inequality of
(3). In principle, this means that it should be possible (in the
noise-free setting at least) to exactly recover any 2W -sparse
signal. Furthermore, if a small amount of measurement noise
is added to the measurements y as in (2), then the RIP pro-
vides a guarantee that any 2W -sparse signal consistent with
the perturbed measurements will be close to the original sig-
nal, and so the RIP ensures that the system has a degree of
stability and robustness to measurement noise.

We now consider how to design an operator Φ satisfying
the RIP. An important result from the CS theory is that for any
given basis Ψ (not just the Fourier basis we focus on here),
if we draw a random matrix R of size 2B/Q × 2B whose
entries rij are independent realizations from a Gaussian,
Rademacher (±1-valued), or more generally, any bounded,
zero-mean distribution, then with overwhelmingly high prob-
ability Φ = RΨ−1 will satisfy (3) for 2W -sparse signals
provided that

Q ≤ Qc = κ0
Qf

lnQf
(4)

where κ0 < 1 is a constant that depends on B and the prob-
ability with which (3) holds [5]. From this we conclude
that CS-based measurement operators Φ pay a small penalty,
quantified by κ0/ ln(Qf ), for not exploiting any a priori
knowledge of the locations of the nonzero frequencies.

In general, the theoretical analysis is somewhat lacking in
terms of the precise value of κ0. For instance, an asymptotic
analysis of the results in [5] would suggest that κ0 ≈ 1/50
would be sufficient, but this value seems to be far more con-
servative than what is required in practice. Thus, if a specific
value for κ0 is required, one must determine this value ex-
perimentally. This is typically accomplished via Monte Carlo
simulations that identify how many measurements are suffi-
cient to ensure exact recovery in the noise-free setting on at
least, say, 99% of trials. As an example, it is shown in [6]
that Q <≈ 0.6Qf/ ln(Qf ) is sufficient to enable exact re-
covery in the noise-free setting. Note that this is not the same
as demonstrating that Q <≈ 0.6Qf/ ln(Qf ) is sufficient to
ensure that Φ satisfies the RIP, but it is highly suggestive that
the true value of κ0 is much greater than the conservative es-
tiamtes provided by the theory. We will observe this phe-
nomenon for ourselves in Section 4.

Since the random matrix approach is somewhat impracti-
cal to build in hardware, several hardware architectures have
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Fig. 3. Random demodulator for obtaining compressive mea-
surements of analog signals.

been implemented and/or proposed that enable compressive
samples to be acquired in practical settings. Examples in-
clude the random demodulator [6], random filtering [7], and
random convolution [8, 9].

We briefly describe the random demodulator as an exam-
ple of such a system; see Figure 3 for a block diagram. The
four key components are a pseudo-random ±1 “chipping se-
quence” pc(t) operating at the Nyquist rate 2B or higher, a
low pass filter, represented by an ideal integrator with reset,
and a low-rate ADC consisting of a sample-and-hold circuit
and a quantizer. The input analog signal x(t) is modulated by
the chipping sequence and integrated. The output of the inte-
grator is sampled and quantized, and the integrator is reset af-
ter each sample. The output measurements from the sample-
and-hold circuit are then quantized. The subsampling factor
Qc determines the sampling rate C at which the sample-and-
hold circuit and quantizer operate. Specifically, we must have
C ≥ 2B/Qc.

Mathematically, the linear measurement operator Φ of
the random demodulator can be decomposed into the product
Φ = RΨ−1, whereR is a matrix of size of size 2B/Q×2B.
The resultingR matrix, while randomized, typically contains
some degree of structure. For example, the random convo-
lution architecture [8, 9] endows R with a Toeplitz structure.
While theoretical analysis of structured random matrices re-
mains a topic of active study in the CS community, there do
exist theoretical guarantees for some architectures [6, 8]. The
amount of subsampling possible (Qc) with these construc-
tions is generally consistent with fully random measurements
as given in (4), although the denominator is sometimes raised
to a small power (e.g., 2 or 4) for provability.

3.2. CS recovery algorithms

We now address the question of how to recover the signal x(t)
from the measurements y. The original CS theory proposed
`1-minimization as a recovery technique when dealing with
noise-free measurements [1, 2]. Noisy measurements as in
(2) can be easily handled using similar techniques provided
that the noise e is bounded, meaning that ‖e‖2 ≤ ε. In this
case, assuming that Φ = RΨ−1 satisfies the RIP, in which
case we can write y = RΨ−1(Ψ(α)) = Rα, the convex

program

α̂ = argminα ‖α‖1 s.t. ‖Rα− y‖2 ≤ ε (5)

can recover any sparse signal α. Thus by setting x̂(t) =
Ψ(α̂), we can recover x(t). More specifically, this is made
precise in [10] which establishes that for 2W -sparse signals,
the recovery error can be bounded by

‖x̂(t)− x(t)‖2 ≤ κ1ε, (6)

where κ1 ≥ 2 is a constant that depends on the subsampling
factor Q. This constant is similarly difficult to determine the-
oretically, but in practice it should be very close to 2 provided
that Q < Qc. Thus, measurement noise has a controlled im-
pact on the amount of noise in the reconstruction. A similar
guarantee can be obtained for approximately sparse, or com-
pressible, signals2.

While convex optimization techniques like (5) are power-
ful methods for CS signal recovery, there also exist a variety
of alternative algorithms that are commonly used in practice
and for which performance guarantees comparable to that of
(6) can be established. In particular, iterative algorithms such
as CoSaMP, iterative hard thresholding (IHT), and various
other thresholding algorithms are known to satisfy similar
guarantees to (6) [11–13]. Most of these algorithms are built
on similar techniques and can be easily understood by break-
ing the recovery problem into two separate sub-problems:
identifying the locations of the nonzero coefficients of α
and estimating the values of the nonzero coefficients of α.
The former problem is clearly somewhat challenging, but
once solved, the latter is relatively straightforward and can be
solved using standard techniques like least squares. In partic-
ular, again using the factorization of Φ = RΨ−1, suppose
that we have identified the indices of the nonzero coefficients
of α (its support), denoted by the index set J , and let RJ

denote the submatrix of R that contains only the columns
corresponding to the index set J . Then an optimal recovery
strategy is to solve the problem:

α̂ = argmin
α
‖y −RJα‖2, (7)

which is a standard least-squares problem that can be solved
via the pseudo-inverse ofRJ , denotedR†J :

α̂ = R†Jy = (RT
JRJ)−1RJy. (8)

Note that in the noise-free case, if α is 2W -sparse and the
support estimate J is correct , then y = RJα, and so plug-
ging this into (8) yields α̂ = α. Thus, the central challenge

2By compressible, we mean signals that are well approximated by a
sparse signal. The guarantee on the recovery error for compressible signals is
similar to (6) but includes an addititional additive component that quantifies
the error incurred by approximating x(t) with a sparse signal. Therefore, if
a signal is very close to being sparse, then this error is negligible, while if a
signal is not sparse at all, then this error can be quite large.
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in recovery is to identify the correct locations of the nonze-
ros. CoSaMP and many related algorithms solve this problem
by iteratively identifying likely nonzeros, estimating their val-
ues, and then improving the estimate of which coefficients are
nonzero.

3.3. Noise folding and CS measurements

Most of the CS literature focuses on ensuring the stability of
the CS acquisition and recovery process in the face of mea-
surement noise e in (2) [10–13]. In this section, we take a
careful look at the effect of signal noise that is present in the
signal before acquisition. Specifically, we now assume that
the Fourier representation of x(t) consists of a 2W -sparse
signal corrupted by additive Gaussian noise n. We will as-
sume that the noise n is zero-mean and spectrally white with
covariance matrix Σn = σ2I2B and added across the en-
tire 2B-dimensional Fourier spectrum α and not just the 2W
non-zeros of α. Thus, we acquire the measurements

y = Φ(Ψ(α+ n)) = Rα+Rn. (9)

The noise situation is subtly different from (2), because the
noise in the measurements y is now scaled by the matrix R.
Our chief interest here is to understand how R impacts the
signal noise and how it manifests itself in the final recovered
signal.

We first observe that Rn is zero mean with covariance
matrix ΣRn = σ2RRT . To further simplify this expression,
we make some relatively intuitive assumptions concerningR:
(i) each column ofR has norm (energy) approximately equal
to 1,3 (ii) the rows of R have approximately equal norm, and
(iii) the rows of R are orthogonal. The first assumption sim-
ply means that the columns ofR are weighted equally, which
means that the noise nk on each coefficient αk will contribute
roughly an equal amount to the total noise. If the locations
of the nonzeros were known a priori, then we could do bet-
ter by assigning more weight to the columns corresponding to
αk 6= 0 and less weight to columns corresponding to αk = 0
(which are purely noise). However, in the absence of this
knowledge, if we want the impact of the noise to be indepen-
dent of the location of the nonzeros, then there is no alterna-
tive but to weight the columns equally. Similarly, the second
assumption requires that each measurement should have equal
weight. Finally, the third assumption is not strictly necessary,
but it seems reasonable that if we wish to take as few measure-
ments as possible, then each measurement should provide as
much new information about the signal as possible. Note that
these assumptions hold for randomly generated R matrices,
as well theR matrices corresponding to more practical archi-
tectures such as the random demodulator [6].

By combining (i) and (ii), we can infer that each row ofR
should have norm of approximately

√
2B/(2B/Q) =

√
Q.

3Note that this property is implied by the RIP by considering signals with
only one nonzero coefficient.

Combining this with (iii), we obtain the approximation

RRT ≈ QI2B/Q. (10)

Thus, the covariance matrix ofRn is approximately

ΣRn ≈ RRT (σ2I2B) = σ2QI2B/Q. (11)

From (11) we see that the noise Rn is spectrally white but
amplified by the subsampling factor Q. This makes sense
intuitively, since we are projecting all of the noise in the
2B-dimensional input signal (α or equivalently x(t)) down
into the 2B/Q-dimensional measurements y, and all of the
noise power must be preserved. In the literature, this effect is
known as noise folding.

Noise folding has a significant impact on the amount of
noise present in CS measurements. Specifically, when acquir-
ing a 2W -sparse signal, as we double the subsampling factor
Q (a one octave increase), the signal-to-noise ratio (SNR) of
the measurements y decreases by 3dB. In words, for the ac-
quisition of a noisy signal of fixed sparsity, the SNR of the CS
measurements decreases by 3 dB for every octave increase in
the subsampling factor.

We note that alternative signal acquisition techniques like
bandpass sampling (sampling a narrowband signal uniformly
at a sub-Nyquist rate to preserve the values but not the loca-
tions of its large Fourier coefficients) are affected by an identi-
cal 3dB/octave SNR degradation. However, in practice band-
pass sampling suffers from the limitation that it is impossible
to determine the original component center frequencies, and
furthermore, if there are multiple narrowband signals present
then it causes irreversible aliasing, in which case the com-
ponents can overlap and will be impossible to separate. In
contrast to bandpass sampling, however, CS acquisition pre-
serves sufficient information to enable the recovery of both
the values and the locations of the large Fourier coefficients.

3.4. Noise folding and CS reconstruction

We now examine the impact of noise folding on CS signal
reconstruction. Rather than directly analyzing a particular
reconstruction algorithm, we will instead consider the perfor-
mance of an oracle-based recovery algorithm that has perfect
knowledge of the true location of the 2W nonzeros of α,
which we have denoted by J . While an oracle is clearly im-
practical, it characterizes the best that we can hope to achieve
using any practical algorithm. And, in fact, we find that
practical algorithms like CoSaMP typically perform almost
as well as the oracle-based recovery algorithm.

Given J , the optimal estimate of α is given by (8), result-
ing in

α̂ = α+R†JRn. (12)

Thus, we recover the signal α plus the additive noise now
scaled by the matrix R†JR. To understand the properties of
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this noise, we examine its covariance matrix

ΣR†
JRn

=
(
R†JR

)(
R†JR

)T
= R†JRR

T (R†J)T . (13)

If we assume that Φ has the RIP, then for any J of size K and
for any v ∈ RK , ‖RJv‖22 = vTRT

JRJv ≈ ‖v‖22. Thus

RT
JRJ ≈ I2W . (14)

Hence, we arrive at

ΣR†
JRn

≈ σ2QR†J(R†J)T

= σ2Q
(
RT
JRJ

)−1

RT
JRJ

(
RT
JRJ

)−1

= σ2Q
(
RT
JRJ

)−1

≈ σ2QI2W . (15)

As with the case of the compressive measurements y, the
covariance matrix (15) is amplified by the factor Q. Thus, the
oracle-reconstructed signal suffers from the same 3dB/octave
SNR degradation as the compressive measurements.

The 3dB/octave SNR degradation represents a potentially
important tradeoff in the design of CS receivers. Figure 4 il-
lustrates the impact of the theoretically predicted growth of
the noise floor, and hence noise figure, as a function of Q.
This yields the the engineering design rule for CS receivers
of NF ≈ 10 log10(Q), where NF is the noise figure as de-
fined in Section 2. We see that for a signal of fixed signal
bandwidth W and input SNR, there is a practical limit to the
instantaneous bandwidth B within which we can effectively
acquire the signal. In Section 4 we match this theoretical re-
sult against the results of multiple simulations.

3.5. Dynamic range and CS

We now consider the impact of the subsampling factor Q on
the dynamic range of a CS acquisition system. By dynamic
range we mean the ratio of the maximum to minimum signal
level with which received signals can be handled with full fi-
delity. Recall that a conventional signal receiver comprises
linear input signal amplification and demodulation stages fol-
lowed by a sample-and-hold circuit and a (nonlinear) quan-
tizer, and so its dynamic range is determined by the number
of bits available to the quantizer. Similarly, a CS acquisition
system comprises a linear measurement operator Φ followed
by a sample-and-hold circuit and then a quantizer (e.g., see
Figure 3). Hence, its dynamic range will also be determined
by the number of quantizer bits. We can thus identify another
potential advantage of CS-based receivers: since they operate
at a lower sampling rate than conventional receivers, we can
potentially re-allocate some of the SWAP saved from lower-
ing the sampling rate towards increasing the number of bits
and hence the system dynamic range.

4. TESTING STRATEGY

Hardware devices are currently under construction that
will permit laboratory testing of CS-based acquisition re-
ceivers [6]. In the interim, however, we have conducted a
set of computer simulations to validate the theoretical perfor-
mance results of the information extraction algorithms that
have been developed to date. We present here the strategy
associated with this simulation-based testing and an example
of the results obtained so far.

The use of CS implies that the input to the receiver must
be reasonably close to the definition of “sparse.” To match
that model, our simulation work assumed that the receiver in-
put consists of no more than P signals, each of bandwidth no
greater thanW and with a total bandwidth no greater thanW .
We also assume the presence of white additive noise across
the input band. We assume that the P input components do
not overlap in the Fourier domain but otherwise might appear
anywhere within the instantaneous bandwidth of the receiver
B.

To make it possible to measure SNR and, in particular, the
SNR degradation induced by the receiver, we have assumed
a particular structure for the input signal components. Each
is assumed to model a single voice signal, with uniform en-
ergy density between 300 and 3400 Hz, but with a notch at
a specific frequency (2500 Hz in this case). The use of such
a signal, as shown in Figure 5, permits the use of two tech-
niques for measuring the output SNR – the classical method
of computing the summed squared difference between the in-
put and output signals and a technique called the noise power
ratio (NPR) by which the ouput SNR is measured by compar-
ing the power density in the notch to the power density in the
rest of the signal. As [14] and others report, the technique,
historically used in the telephone industry and in testing A/D
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convertors, has the advantages that it is easily computed and
that it is affected by additive noise, system nonlinearities, and
receiver imperfections in predictable ways. We use the clas-
sic method in the simulation-based results presented in this
paper, but are using both in ongoing investigations.

The simulation testing suite assembled for this effort
permits from 1 to P of these “voice-like” signals to be
modulated, if desired, translated up to arbitrary frequen-
cies, summed, corrupted with additive white noise, and then
applied to the CS receiver. The quality of the recovered in-
dividual components is then determined using the NPR or
classical SNR measurement technique.

Figure 6 shows the results of one set of receiver perfor-
mance evaluations. In this case the transmitted signal is mod-
eled in the simplest possible way — as a single 3.1 kHz-wide
unmodulated voice signal single-side-band-upconverted to a
frequency within a 1 MHz input bandwidth of the receiver. In
this case performance is measured as a function of the sub-
samping factor Q, which was identified in Section 3 to be the
key parameter affecting the cost and performance of practi-
cal receiver. The testing shown in Figure 6 was conducted
at three input SNRs — 60, 40, and 20 dB — where SNR in
this case is measured as the ratio of the signal power to that
of the noise within the 3.1 kHz bandwidth occupied by the
signal. The output SNR, measured classically within the 3.1
kHz signal bandwidth, was evaluated three ways:

• Bandpass sampling — This is not a recommended prac-
tical technique, but it does serve as a benchmark since
it is “filterless” like CS. It is important to note that this
method ”folds” the input spectrum so that signal fre-
quencies can no longer be unambiguously determined
at the receiver.

• Idealized CS-based signal extraction using an “oracle”
that knows the spectral support of the signal compo-
nent — While not practical, again, the oracle provides
a way to determine what portion of any observed re-
ceived quality degradation is totally unavoidable within
the CS framework and what portion is due to the recov-
ery algorithm’s inability to determine the spectral sup-
port.

• Practical CS-based signal extraction using CoSaMP to
determine the spectral support of the input signal.

We can make the following observations from the experi-
mental results depicted in Figure 6:

• The output SNR of both the bandpass sampled signal
and the oracle-aided CS technique is degraded at a rate
of 3 dB for each octave increase in Q, exactly as pre-
dicted by theory.

• The oracle-aided CS SNR closely follows the subsam-
pled SNR untilQ begins to approach the theoretical CS
limit:

Qc = κ0
Qf

lnQf
= κ0

B/W

ln(B/W )
.

Note that for these experiments, Qf = (2 · 106)/(3.1 ·
103) ≈ 645, and thus log2(Qf/ ln(Qf )) ≈ 6.6. In
Figure 6 we observe that we do not begin to observe a
dramatic difference between the performance of oracle-
aided CS and CoSaMP until log2(Q) > 7. While in
general we should not expect to always perform this
well (this example would suggest that performance
does not begin to decay until κ0 becomes less than 1),
this does demonstrate that the practical impact of κ0

on the maximum subsampling factor Qc is likely to be
minimal.

• The SNR performance of the CoSaMP algorithm gen-
erally tracks the others, but performs progressively
more poorly for high subsampling factors. Moreover,
its performance collapses as the theoretical limit is
reached and as the input SNR falls below a critical
level.

• In the regimes where the SNR performance of CoSaMP
is significantly worse than that of oracle-aided CS, we
observe that oracle-aided CS continues to match the
SNR of the bandpass sampled signal. This indicates
that in these regimes, CoSaMP is unable to identify the
correct locations of the nonzero Fourier coefficients,
since if it could it would match the oracle-aided CS
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Fig. 6. One example of simulation results. Receiver ouput
SNR as a function of receiver subsampling ratio Q for an en-
vironment consisting of a single unmodulated voice channel
in the presence of additive white noise.

performance, i.e., support estimation is the harder part
of CS recovery (as opposed to coefficient estimation).
Thus, if any side information concerning the likely lo-
cations of these nonzeros were available, one could ex-
pect that exploiting this information would have a sig-
nificant impact on the SNR performance.

Many more simulation-based experiments are underway,
exploring a variety of input signal mixtures and characteris-
tics. Of particular note so far is the result that, as theoret-
ically expected, CS-based signal extraction can successfully
recover signal components without the aliasing that causes
self-interference when using subsampling techniques based
on simple unfiltered decimation.

5. USING THE DESIGN RULES
TO EVALUATE A CS RECEIVER

The design implications of the relationships developed in Sec-
tion 3 and validated, at least to first order, in Section 4 can be
illustrated in Figure 7 using the system performance objec-
tives listed in Table 1. Applying the appropriate equations
from Section 3 and using the rule of thumb κ0 ≈ 0.5, we find
that:

Qf = subsampling factor achievable with bandpass sampling
= B/W = 2500,

Qc = maximum subsampling factor for a CS-based system

= κ0
Qf

lnQf
≈ 160
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Fig. 7. Theoretical performance of CS-based receiver in a
specific example.

C = measurement rate of a CS-based system
= 2B/Qc ≈ 6250 kHz,

NF = decimation-induced noise magnification
≈ 10 log10Qc ≈ 22 dB.

Thus, given the set of objectives in Table 1, we find that
the sampling can be reduced by a factor of 160 (and hope-
fully the entire “cost vector” with it) at the price of increasing
the noise floor, and hence reducing the signal SNR, by 22 dB.
This should be compared with bandpass sampling schemes
that can reduce the sampling rate even more (by a factor of
2500) but at the price of (i) high computational cost if predec-
imation filtering is performed or (ii) irretrievable aliasing of
the signal components if it is not.

Not addressed in this evaluation is the dynamic range
achieved by the system. As discussed in Section 3, the process
of CS does not theoretically degrade or improve the dynamic
range of the receiver, since the power ratios among the var-
ious input components remains unchanged. There is strong
evidence, however, that the sample rate reduction brought
with CS techniques can have the practical effect of increas-
ing the system’s achievable dynamic range, and, further, that
specific design choices can produce a CS-based receiver that
excels over conventional designs. Work on this topic is un-
derway, and the potential for improvement depends strongly
on the specific circuit components available. The rationale
for our expectation of potential improvement can be seen in
Figure 8. It shows a compressive sensor which employs the
randomized demodulator discussed in Section 3. Note that
an attribute of this design is that both the sample-and-hold
circuit and the quantizer at the output of the demodulator
operate at rate C, which is much slower than the rate required
with conventional receivers which must digitize at rates of 2B
or greater. This rate reduction is expected to permit the use
of circuit components with much greater amplitude sampling
precision, and therefore capable of preserving the dynamic
range of the signal with much more care.
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6. CONCLUSIONS AND THE WAY FORWARD

The results reported in this paper to this point can be captured
as follows:

• The application of the existing CS theory to the prob-
lem of designing a high-performance RF signal acqui-
sition receiver indicates that the approach should work,
and moreover that it should be able to reduce the sys-
tem SWAP and monetary cost considerably but at the
cost of increasing the noise figure of the system.

• The amount of decimation (unfiltered or CS) affects
SNR in a predictable way in the presence of additive
white noise.

• The limited signal simulation results available so far
indicate that a properly designed CS receiver can ap-
proach, or even meet, the theoretically predicted per-
formance if the input SNR is high enough.

• Dynamic range is theoretically unaffected but, as a
practical matter, might be significantly affected in the
favor of certain CS receiver designs because of practi-
cal A/D implementation considerations.

These results allow the design conundrum to be clearly
stated: the move to high levels of decimation, which should
yield big reductions in SWAP and monetary cost, relay band-
width, and perhaps dynamic range improvement, is achieved
at the expense of “input noise amplification”, which will limit
the system’s signal sensitivity (aka the “minimum discernible
signal” (MDS)) for the acquisition system. The bottom line
is that CS-based techniques are likely to be very useful in
selected but important situations, such as ones with a few rel-
atively strong narrowband signals with unknown characteris-
tics dispersed over a very large frequency band. An example
of this is illustrated in Figure 9, where a compressive acqui-
sition receiver is used “at the point of the spear” in a tactical
signal geolocation system. In this application the CS receiver
samples the wideband environment and sends the resulting
data to a central, non-power-constrained processing and co-
ordination point. With this data the central processor detects
the presence of emitters of interest, determines their center
frequencies and bandwidths, and tasks the other signal col-
lectors that were previously unaware of the signal. By com-
bining the signals collected by the “tipped” collectors with the
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Selected 
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Fig. 9. Using a compact CS receiver as the primary sensor in
a cross-platform geolocation system.

signals recovered from the CS receiver’s data, the locations of
the emitters can be determined, and with better precision than
with many other collector configurations. These results, and
estimates of expected performance, will appear in a sequel.
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