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ABSTRACT 

A large portion of the expenses in a construction project are allocated towards 

the capital and operating costs of heavy equipment. Most of construction heavy 

equipment and tools carry out activities in the form of repetitive cycles (e.g., a cycle of 

digging, swinging, loading). Precisely estimating cycle times for those operations is a 

crucial step toward productivity analysis, cost estimation, and scheduling of a 

construction project. The traditional approaches for estimating cycle times of 

construction cyclic activities are twofold: 1) based on direct observations and 

recordings; 2) using available graphs and approximate formulas for estimations. The 

first approach is time consuming and labor intensive and the second one might not be 

sufficiently accurate and realistic. To tackle the above-mentioned issues, this paper 

proposes an automated, Bayesian system for estimating cycle times of construction 

heavy equipment. Considering that construction equipment usually produces distinct 

acoustic patterns while performing various tasks, the main input for the system is 

recorded audio data. The presented system includes a de-noising algorithm for 

enhancing the quality of audio data as well as a Short-Time Fourier Transform (STFT) 

and Support Vector Machines (SVM) for classifying various activities in a primary 

stage. A Markov chain model for activity transitions is calculated from ground truth 

data and used to code an adaptive filter that converts SVM-labeled time-frequency bins 

into higher-level labels of the full period for each activity. Preliminary results show 

that, through this system, the accuracy of predicting cycle times could be as high as 

90%.  
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INTRODUCTION 

Project managers usually perform a financial estimate for site work activities 

(e.g., foundation excavation and site cleaning) based on job type, material quantity, site 

conditions, contractual and legal constraints, and safety factors. Given that a significant 

fraction of the budget is allocated toward the capital and operating costs of construction 

equipment, type and quantity must be selected optimally. This is usually based on an 

expected production rate obtained from historic data, manufacturer’s manual, or guides 

(Peurifoy et al. 2010; Caterpillar 2017). Nonetheless, projected productivity seldom 

matches actual productivity.  

While most non-farming labor efficiency has at least doubled since the 1960s, 

statistics show that 70% of construction projects are over budget and delivered late 

(Lean Construction Intitute 2017). This low performance can be attributed in part to 

the fact that the construction industry lacks an automated performance monitoring 

system that may allow for real-time waste reduction and labor management. A pressing 

necessity considering that construction industry contributes to at least 10% of the gross 

national product (Navon 2005). One of the major obstacles to developing an automated 

performance monitoring system for the construction environment is that projects are 

diverse and that the activities within them are hard to classify, even during different 

stages of the same project. Regardless of the nature of the project; however, it is likely 

that it involves machinery performing cyclic activities. For earthmoving operations, 

productivity is calculated in terms of volume of displaced material or finished surface 

area. Tractors, loaders, excavators, and graders are the principal machinery used to 

execute these tasks. All this equipment has in common that productivity is inversely 

proportional to cycle time, which is generally obtained from direct observation or 

estimated from historic data. Direct observation is time-consuming, expensive in terms 

of labor cost, and prone to human error, while statistical estimations might not 

effectively characterize complex operations under varying conditions, e.g., operator 

skill, weather conditions, and maneuverability. Other parameters for calculation like 

bucket capacity, fill factor, and blade size, are fairly constant because they depend on 

equipment design and type of material being worked with. Thus, an attempt for real-

time monitoring of construction equipment must focus on calculating cycle times 

accurately in a timely manner.  

 A line of research into the use of audio signals for activity analysis of heavy 

equipment and construction site productivity estimation has been recently initiated by 

the authors of this paper and other scholars (Cheng et al. 2017; Cho, Lee, and Zhang 

2017). Taking the output of the previously devised activity analysis audio framework 

as direct observation data and using historic data to design Markov-chain-based filter, 

we propose an optimal cycle time forecasting system. 

 

LITERATURE REVIEW: BAYESIAN MODELS 

The major strength of Bayesian statistics is its ability to include historical data 

to perform calculations based on degrees of belief. Bayesian methods have taken an 

increasingly important role in cycle time and productivity estimation and other 

situations requiring stochastic modeling. In fact, the Metropolis Algorithm for Monte 

Carlo has been listed by the IEEE Journal Computing in Science and Engineering as 

one of the “10 algorithms with the greatest influence on the development and practice 
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of science and engineering in the 20th century” (Dongarra and Sullivan 2000). Using 

random processes and probabilistic simulations derived from a fraction of the typically-

required samples, this algorithm offers an efficient way to pursue answers to problems 

that are too complex to solve exactly. 

 

Bayesian Models in Manufacturing 

There is some notable research relating to Bayesian models for productivity 

estimation in manufacturing.  Chen, George, and Tardif (2001) proposed a Bayesian 

approach to model cycle time mean and variance at different levels of work-in-

progress. They used Markov Chain Monte Carlo (MCMC) methods, namely the Gibbs 

sampling and the Metropolis-Hastings algorithms, to partition and parametrize cycle 

time mean vs. work in progress linear piecewise function and obtained promising 

results when comparing their model with a typical non-linear model. Abdoli and 

Choobineh (2004) conducted a simulation experiment of a resource-sharing, multi-

class production environment to compare the performance of Bayes and empirical 

Bayes methods applied to different flow time forecasting models. Their results strongly 

suggest that simpler models consistently yield better forecasts than complex models 

with carelessly-selected parameters.  More recently, Shen (2008) developed a Bayesian 

network model for cycle time estimation in the LCD screen defect detection process. 

Since defect detection is usually carried by human visual inspection, common practice 

for cycle time estimation is conveyed through complex frequentist statistical models. 

Nevertheless, Bayesian models, once again, provided a relatively simple and reliable 

solution. 

 

Bayesian Models in Construction 

Due to the complex nature of the construction environment, many construction 

scholars and engineers have relied on Bayesian statistical methods in a variety of 

applications including:  modeling workflow for productivity forecasting, analyzing 

structural resistance to natural forces, and analyzing safety hazards. 

For productivity estimation, MCMC-based models have been particularly 

relevant.  Semaan (2016) performed a stochastic productivity analysis of a ready mix 

concrete batch plant using a queuing model based on Markov chains and a simulation 

model based on Monte-Carlo-based MicroCyclone modeling software. These results 

showed that the MicroCyclone simulations effectively evaluate idleness and yield 

novel insight into the impact on plant productivity resulting from changing truck size 

and quantity. The findings of this study led to MicroCyclone being used to model 

numerous activities including: tunneling, paving, bridge construction, bridge 

redocking, and several other construction operations (Halpin and Riggs 1992; Pang, 

Zhang, and Hammad, 2006). In structural analysis, specifically Performance Based 

Design (PBD), Bayesian models are useful to determine the amount of stress that a 

structure will be subject to when considering natural phenomena. Adeli et al. (2011) 

published insightful remarks after performing a probabilistic seismic demand analysis 

using MCMC methods to simulate the effects on structural performance from 

parameters with known prior distribution, but no correlation (i.e., earthquakes and 

economic factors). 
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Safety in the construction industry deeply relies on providing proper proximity 

warnings and understanding the workers’ responses to such warnings. Looking forward 

to creating a proactive collision warning system, Zhu et al. (2016) utilized Kalman 

filtering to predict movement of construction equipment and workers in a construction 

job site. Location estimates from a computer vision framework were provided as input 

to the filter. Then, the filter generated its own estimates and a corrected location was 

determined using Kalman gain as a degree of belief. The filters were continuously 

adjusted based on historical position data and showed incremental effectiveness as 

more data became available. Luo et al. (2016) conducted a field experiment to gather 

location-based data on workers’ response rates to different levels of safety hazard 

warnings. Considering that construction job sites are constantly evolving depending on 

various factors, like complexity and urgency, they applied a Bayesian model founded 

on MCMC methods to get realistic and versatile response rate estimates from 

simulation. 

This research aims to benefit from the proven versatility of Bayesian models to 

a field that had been disregarded despite its potential for application: cycle time 

modeling of construction equipment with real-time audio-based activity information. 

  

RESEARCH METHODOLOGY 

The process followed for cycle time estimation can be divided into four steps, 

as depicted in Figure 1. The authors have designed and implemented Markov chains 

for productivity estimation as an addition to the audio framework presented in previous 

publications. 

 

 
Figure 1: Cycle time estimation framework. 

 

Audio Recording 

Individual pieces of construction heavy equipment were recorded performing 

cyclic activities. In separate work, the authors have studied optimal hardware 

placement and type thoroughly (Cheng, Rashidi et al. 2017). Thus, the XMOS xCORE-

200 multichannel array microphone was placed on site, less than 10 meters away from 

the sound source of interest. Video was recorded simultaneously for manual activity 

labeling. 

 

Audio SVM Framework 

Audio recordings were processed in MATLAB through an audio activity 

labeling framework. The audio framework consists of four major steps: first, audio 

recordings were enhanced through a de-noising algorithm to isolate the signal of 

interest; second, frequency magnitude and phase features were extracted through the 

Short-Time Fourier Transform (STFT) to obtain a time-frequency representation of the 

audio signal; third, a Support Vector Machine (SVM) supervised machine learning 

algorithm was used for library generation and posterior activity classification; and, 

finally, time frequency bins of classified activities were converted to higher order labels 

Audio 
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Markov Chain 
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through a two-step window filter. Essentially, the window filter scans through 

continuous bins of labeled data and labels a greater potion of the audio signal if the 

percentage of bins over the window is greater than a specific threshold. This percentage 

can be taken as the accuracy over the window filtering process. 

 

Markov Chain Filter 

The output from the audio SVM framework was not sufficiently smooth to 

estimate cycle times accurately. Therefore, Markov chains were incorporated to include 

ground truth statistical data into activity labeling. To design a suitable Markov model, 

the concepts of decisions per activity and calls for activity were devised. The number 

of time-frequency bins in one second of audio is given by the equation below. 

𝐵𝑃𝑆 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑆𝑇𝐹𝑇 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑖𝑧𝑒 − 𝑆𝑇𝐹𝑇 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
 

In this study, the audio sampling frequency is 44100 Hz, the STFT window size 

is 512 samples, and the STFT overlap is 256 samples. Thus, the number of bins per 

second is 172.26. The SVM classifier labels each bin so the number of seconds elapsed 

in each class multiplied by the number of bins per second represents decisions taken 

during each activity. The number of calls for activity refers to the number of transitions 

from one activity to the other.  

 

Table 1: Ground truth data for JD 700J. 
Activity Start 

(sec) 

Elapsed 

Time 

 Call 

Act 1 

Call 

Act 2 

Act 1 

Time 

Act 2 

Time 

Decisions 

1 

Decisions 

2 

Pushing soil with blade 0 35 NA   35 
 

6029   

Reversing 35 13   1   13   2239 

Pushing soil with blade 48 25 1   25   4306   

Reversing 73 13   1   13   2239 

Pushing soil with blade 86 44 1   44   7579   

Reversing 130 28   1   28   4823 

Pushing soil with blade 158 23 1   23   3962   

Reversing 181 16   1   16   2756 

Pushing soil with blade 197 46 1   46   7924   

Reversing 243 23   1   23   3962 

Pushing soil with blade 266 31 1   31   5340   

Reversing 297 16   1   16   2756 

Pushing soil with blade 313 27 1   27   4651   

Reversing 340 14   1   14   2412 

Pushing soil with blade 354 5 1   5   861   

End 359               

TOTAL     7 7 236 123 40653 21188 

 

A typical arrangement of ground truth data for Markov chain calculation is 

depicted in Table 1. The total time that the construction equipment spent on performing 

major activities (Act 1) and minor activities (Act 2) was manually labeled using video 

recordings as reference. This is indicated in the columns Act 1 Time and Act 2 Time. 

Multiplying these by the number on bins per second produces the values in columns 
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Decisions 1 and Decisions 2. The number of calls for each activity is simply the number 

of transitions from Act 1 to Act 2, and vice versa. The probability of the state changing 

to Act 2 given that it is Act 1 is equivalent to the calls for Act 2 divided by the number 

of decisions taken while in Act 1. The probability of the state being Act 1 and keep 

being Act 1 is the complement. Using data from Table 1, the values for a Markov model 

are calculated below: 

 While in Act 1, 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1
=

7

40653
= 0.00017219 → 0.017% 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 1) = 1 − 𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) = 0.99982781 → 99.983% 

 While in Act 2, 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2
=

7

21188
= 0.000330 → 0.033% 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 2) = 1 − 𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) = 0.999670 → 99.967 

The Markov chain matrix for the JD 700J dozer using the state-dependent 

probability distributions is depicted in Table 2.  A graphical representation of the 

Markov process is depicted in Figure 2. 

 

Table 2: Markov matrix for JD 700J. 
John Deere 700J Next State 

Act 1 Act 2 

Current State Act1 0.999828 0.000172 

Act2 0.000330 0.999670 

 

 

 

 

Figure 2: Two-state Markov process for JD 700J. 

 

The process flow diagram of the Bayesian filter is shown in Figure 3. The audio 

portion (sensor data) is depicted in blue, the Markov chain portion is depicted in red, 

the current state is depicted in green, and decision blocks are depicted in grey. The 

predicted state for the Markov chain is the one with highest probability in the Markov 

process. The accuracy for the prediction is the probability by which it was predicted. 

Likewise, the accuracy for the SVM-predicted state is taken as the percentage over the 

widow filter by which it was determined. The next state is the one with greater 

accuracy, either the SVM-predicted state or the Markov process state. The exponent 

(n) of the Markov process is reset if the current state diverges from the previous state. 

Otherwise, the Markov matrix is elevated to the next power (n+1) for the following 

step. This algorithm was coded for MATLAB implementation. 



7 

 
Figure 3: Adaptive filter process diagram. 

 

Cycle Time Estimator 

If cycle time for a specific action can be accurately measured, then it can be 

used along with manufacturer data to determine the equipment productivity. A machine 

work cycle is a succession of major and minor activities, as shown in Table 1. Cycle 

time is the time elapsed during such succession. Therefore, the cycle time estimator 

was designed in MATLAB to scan through the labeled audio signal, count continuous 

activities by type, and determine the average time elapsed on each cycle. 

 

Table 3: Typical actions performed by heavy equipment. 
Equipment Action Typical Activity Sequence Type 

Excavator/ Loader/ Dozer 

(dozer less effective) 

Excavating/ Moving 

material/ Backfilling/ 

Truck loading        

Digging Major 

Swinging or maneuvering Minor 

Dumping Major 

Swinging or maneuvering Minor 

Excavator/ Loader Compacting/ 

Demolishing 

Compressing with bucket Major 

Swinging or maneuvering Minor 

Grader/ Dozer/ Loader 

(loader less effective) 

Grading/ Ripping/ 

Clearing/ Blending 

Pushing material with blade/bucket Major 

Reversing or maneuvering Minor 

 

RESULTS 

To assess the accuracy of the cycle time estimation framework, it was tested 

with audio data for three pieces of equipment. For each machine, one audio signal was 
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separated into two portions. The first portion was used for SVM framework training 

and Markov process design and an independent portion was used to test the accuracy 

of cycle estimation framework.  

An example of labeled audio signal for a JCB 3CX backhoe loader clearing 

surface material is depicted in Figure 4.  The top part of the figure shows the predicted 

labels over the spectrogram of the audio signal and the bottom part shows manually 

labeled activities (ground truth data). A high position represents a major activity and a 

low position represents a minor activity. From the predicted sequence, an average cycle 

time of 49.70 seconds has been estimated. The observed average cycle time was 50.77 

seconds, which yields an estimation error of 2.11%. 

 
Figure 4: Labeled activities for a JCB 3CX clearing surface material. 

A summary for the initial assessment is presented in Table 4. Preliminary results 

showed an error of less than 10% for cycle time estimation. Nonetheless, typical 

machine operation is carried under varying work conditions (e.g., location accessibility, 

weather conditions, and operator skill). Thus, additional experimentation was 

performed to evaluate the accuracy of the cycle estimation framework over several days 

of operation. 

 

Table 4: Cycle time estimation accuracy. 
Machine Operation Observed cycle time Predicted cycle time Error 

JCB 3CX Clearing 50.77 49.70 2.11% 

CAT 320E Excavating 9.30 9.96 7.10% 

JD 700J Grading 50.22 50.56 0.68% 

 

 
Figure 5: Simultaneous audio and video recording. 
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A Komatsu PC200 excavator was monitored during 4 days while crushing and 

moving demolition material (Figure 5). For each day, a 12 to 30-minute audio signal 

was processed and the estimated cycle time was compared against the observed cycle 

time obtained from manually labeled activities. The predicted average cycle time and 

observed average cycle time for each day are plotted in Figure 6 (top). It can be 

observed that estimation error is less than 8%, as depicted in Figure 6 (bottom). From 

these results, it can be concluded that a robust cycle time estimation model can be 

achieved through audio signal analysis and the inclusion of statistical information.  

 

 

 
Figure 6: Komatsu PC200 - Observed cycle time vs. predicted cycle time (top). 

Cycle time estimation error (bottom). 

CONCLUSION 

This paper presented a novel, automated forecasting system for construction 

cyclic activities through audio signal analysis and the application of a Markov chain 

filter, designed from a small portion of statistical data. Preliminary evaluation shows 

promising accuracy for estimating cycle time of single machines under various work 

operations and conditions. The authors plan to further contribute into this line of 

research in the following key aspects: 

 Testing the current model with additional equipment operating for several days 

under various work conditions. 

 Calculating cycle time under more realistic environment that involves multiple 

machines working simultaneously. 
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