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ABSTRACT
The recently developed compressive sensing (CS) framework en-
ables the design of sub-Nyquist analog-to-digital converters. Several
architectures have been proposed for the acquisition of sparse sig-
nals in large swaths of bandwidth. In this paper we consider a more
flexible multi-channel signal model consisting of several discontigu-
ous channels where the occupancy of the combined bandwidth of
the channels is sparse. We introduce a new compressive acquisition
architecture, the compressive multiplexer (CMUX), to sample such
signals. We demonstrate that our architecture is CS-feasible and sug-
gest a simple implementation with numerous practical advantages.

Index Terms— compressive sensing, spectrum sensing, random
demodulator, multiplexing, multichannel separation

1. INTRODUCTION
With modern signal processing firmly rooted in digital computation,
efficient conversion from analog signals to digital representations is
of fundamental importance. In recent years, the demand to acquire
data at ever increasing bandwidths has imposed a burden on tradi-
tional analog-to-digital converters (ADCs) that rely on the Shannon-
Nyquist sampling theorem.

The desire to circumvent the Shannon-Nyquist limitation has
prompted a new signal acquisition framework, compressive sensing
(CS), that demonstrates that signals can be acquired at lower sam-
pling rates when they have have relatively few degrees of freedom.
Furthermore, CS enables unique hardware architectures, since it es-
pouses randomized linear sampling systems and non-linear, compu-
tational signal recovery.

This theory has spawned a number of new sub-Nyquist sampling
architectures including the random demodulator (RD) [1], modu-
lated wideband converter (MWC) [2], and random convolution [3],
among others. The aim of these systems is to sample a wide swath
of bandwidth at a rate significantly lower than twice its bandwidth,
yet recover the salient signals within that bandwidth.

Our goal is to monitor multiple channels at a given time, for
example, multiple spectral bands. The systems above can tackle this
application by acquiring the entire bandwidth of interest. However,
this approach is suboptimal in that these systems do not consider
the case where channels of interest are discontiguous and possibly
known a priori.

In this paper we propose a new architecture that we dub the com-
pressive multiplexer (CMUX) for sub-Nyquist acquisition of multi-
ple, discontiguous channels. Our design builds upon the conven-
tional CS framework of Candes, Romberg, Tao, and Donoho [4–6]
and provably satisfies the requirements set forth in that framework.
Our architecture exhibits additional hallmarks: it uses only a single
ADC; it can be assembled from easily available components; it re-
quires simpler calibration than previous architectures; it reduces the
rate of all components to below the Nyquist rate for the total acquired
bandwidth; and it easily lends itself to specialized algorithms thanks
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to its structure. For the remainder of this paper, we will focus on the
specific example of radio frequency (RF) channels for concreteness.

The CMUX effectively codes each channel with a near-
orthogonal code and then combines the coded channels together
in the following way. Each channel of interest is mixed down to
baseband using a conventional RF analog tuner. We then randomly
modulate the output of each channel by a low-rate, pseudo-random,
“chipping” sequence of ±1s. The chipping rate is greater than or
equal to the Nyquist rate of any one channel. The randomly modu-
lated channels are then summed together and sampled at the chipping
rate.

To unmix the channels, we perform sparse recovery as devel-
oped in the CS framework. For the CMUX context, the CS recovery
procedure can be thought of as multi-channel separation [7–9].

Unlike previous architectures, such as the RD and the MWC,
our system does not require calibration of an analog low-pass filter
or integrator. Rather, basic calibration can be simply achieved via
the knowledge of a few resistor values. Also, unlike other parallel
architectures, such as [2, 10], the CMUX only requires one ADC,
rather than one per channel.

This paper is organized as follows. In Section 2 we review the
CS framework and briefly discuss related CS architectures for sens-
ing the RF spectrum. In Section 3 we introduce the CMUX archi-
tecture and propose an implementation that highlights the practical
benefits of this new design. In Section 4 we discuss recovery algo-
rithms that exploit the special structure of the CMUX. In Section 5
we demonstrate the simulated performance of the CMUX in both
ideal and non-ideal scenarios. In Section 6 we conclude with a dis-
cussion about the connections to communication and adaptive sens-
ing techniques.

2. BACKGROUND
2.1. Compressive sensing

CS is a new approach to signal sampling that aims to reproduce
Shannon-Nyquist performance using a smaller number of samples.
Over some fixed interval of time (or region of space), we obtain the
CS measurements as

y = Φxa + e = Φx+ e (1)

where y ∈ R
M , e ∈ R

M is a noise term, Φ is the sampling operator,
and Φ is the equivalent M × N matrix that operates on the vector
x of N Nyquist-rate samples. We can often write x = Ψα where α
is K-sparse, i.e., it has K non-zero entries, and Ψ some transform
matrix, in which case we consider the combined matrix A = ΦΨ.

To ensure stable recovery, we turn to the restricted isometry
property (RIP), introduced by Candès and Tao [4]. We say that
a matrix A satisfies the RIP of order K if there exists a constant,
δ ∈ (0, 1), such that

(1− δ)‖α‖22 ≤ ‖Aα‖22 ≤ (1 + δ)‖α‖22, (2)

holds for all K-sparse α. In words, A acts as an approximate isome-
try on the set of vectors that are K-sparse. Provided that A satisfies
the RIP of order 2K with δ ≤ √

2 − 1, Basis Pursuit De-Noising
(BPDN),

α̂ = argmin
α

‖α‖1 s.t. ‖Aα− y‖2 ≤ ε (3)

3980978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



Fig. 1. (a) CMUX system diagram. Each of the J channels is spread by a different chipping sequence, and then summed and sampled. (b) CMUX equivalent system. The sampling

operation is moved to the front of the system for the sake of analysis.

will yield a recovered signal α̂ that satisfies ‖α̂ − α‖2 ≤ C0ε pro-
vided that ‖e‖2 ≤ ε, where C0 > 1 is a constant depending only on
δ [5]. While convex optimization techniques like BPDN are pow-
erful methods for CS signal recovery, there also exist a variety of
alternative algorithms, such as greedy algorithms, that are used in
practice and have comparable performance guarantees.

A key theoretical CS result is that by drawing only M =
O(K log(N/K)) random rows, we obtain a Φ that satisfies the RIP
of order 2K with high probability (and thus A has RIP if Ψ is an
orthonormal basis). As we will see, similar guarantees are possible
for highly structured measurement systems as well.

2.2. Compressive sampling architectures

Several hardware architectures have been proposed and implemented
to perform CS in practical settings with analog signals. Selected
examples include the random demodulator (RD), random filtering,
random convolution, and the modulated wideband converter [1–3].
These systems aim to capture a large portion of bandwidth with
fewer samples than Shannon would prescribe.

We briefly describe the RD as an example of such a system [1].
The input analog signal is modulated by a ±1 “chipping sequence”
operating at or above the Nyquist rate and integrated. The output
of the integrator is sampled, and the integrator is reset after each
sample. The ideal integrator with reset can be replaced by a low
pass filter.

The components of the RD are typical for many of the afore-
mentioned architectures. We also note that other parallelized archi-
tectures to date require the use of multiple ADCs [2, 10].

3. CMUX: A NEW MULTI-CHANNEL ARCHITECTURE

3.1. System description
The CMUX acquires J independent signal channels, each of band-
width W/2 Hz, into a single stream of samples running at the
Nyquist rate (W Hz) of any one channel. As shown in Figure 1(a),
each channel is first mixed down to baseband to obtain xj(t) and
then modulated by a pseudo-random ±1 chipping sequence pj(t)
with chipping frequency W Hz. The spread channels are then
summed and sampled once per chip by a single ADC. It is impor-
tant to note that the summation occurs across the channels and not
over time (in contrast to previous systems [1–3]).

Without loss of generality, the CMUX can be written as a
W × JW matrix Φ, formed by concatenating diagonal W × W
submatrices Φj , j = 1, · · · , J . For the sake of analysis, we will
consider the elements along the diagonals to be ±1 Rademacher
variables. As an example, let J = 3 and W = 3. Then the Φ

matrix might look like

Φ =

⎡⎣ −1 0 0
0 1 0
0 0 −1︸ ︷︷ ︸

Φ1

1 0 0
0 1 0
0 0 −1︸ ︷︷ ︸

Φ2

1 0 0
0 −1 0
0 0 −1︸ ︷︷ ︸

Φ3

⎤⎦ (4)

We consider signals that are jointly sparse over the combined
bandwidth of the spectrum channels. The sparsity basis Ψ for this
model is a JW × JW block diagonal matrix with W × W DFT
bases along the diagonal. Thus, we aim to recover a K-sparse vector
α ∈ R

JW such that y = Aα, where A is the union of orthonormal
bases

A = [Φ1F ,Φ2F , · · · ,ΦJF ], (5)

and where F is the W ×W unitary DFT matrix. For the remainder
of this paper, the subscript j denotes the submatrix (or subvector)
corresponding to channel j and the subscript \j denotes the subma-
trix (or subvector) corresponding to all channels except for j.

It has recently been demonstrated by Romberg that A of this
form satisfy the RIP [7]. We present a modified version of the state-
ment of the theorem (as suggested in [7]) for completeness:

Theorem 1 (Theorem 3.1 in [7]). Let A be defined as in (5), and fix
δ ∈ (0, 1). Then there exists C0 such that when

W ≥ C1K log4(JW ) (6)

A satisfies the RIP of order K as in (2) with probability 1−C2
0/δC

2
1 ,

where C0 is constant.

Note that the constant C0 is the same as that in [7], and improved
bounds on the probability may be obtained [8]. It is clear from this
statement that for the total bandwidth N = JW , the number of
possible channels can be upper bounded as J ≤ N

K
1

C1 log4 N
.

3.2. The CMUX and bandpass sampling

Real-world RF tuners often mix signals to an “intermediate fre-
quency” (IF) instead of directly to baseband. For example, candi-
date CMUX tuners for RF applications use IFs between 22 MHz
and 70 MHz. Sampling systems with IF signals typically complete
the downconversion using a bandpass sampling technique that in-
tentionally undersamples the IF signal so that its non-aliased image
falls near 0 Hz.

Most CS samplers ignore this issue, meaning that in practice
they must consider a bandwidth that is 2fIF Hz higher than neces-
sary. The CMUX, however, can easily bandpass sample. Consider
the alternative but equivalent CMUX system in Figure 1(b). This
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Fig. 2. Passive Averager CMUX (PA-CMUX) for J = 3.

figure shows that the sampling operation could arguably act directly
on each channel input, which is exactly how bandpass sampling is
performed.

3.3. The passive averager: A CMUX hardware concept

A major goal in implementing randomized CS hardware is to reduce
the possible sources of hardware noise (i.e., achieve a simple design)
so that it does not obscure the benefits achieved through sample rate
reduction. To this end, we propose the Passive Averager CMUX
(PA-CMUX).

As depicted in Figure 2, the PA-CMUX uses a single linear feed-
back shift register (LFSR) to generate the chipping sequence and J
analog switches, two banks of resistors, and a single-channel ADC to
perform the chipping sequence multiply and the instantaneous sum.
The J uncorrelated chipping sequences are formed from delays of
a single chipping sequence. Depending on the sign of the chipping
sequence applied to it, each input signal xj(t) is routed by an analog
switch to either a “+1” or “−1” bank of resistors. Each resistor bank
consists of J resistors of nominally the same resistance; in practice,
discrete resistors are unnecessary as each switch has a controlled
output impedance.

Using Kirchoff’s voltage and current laws, the voltage output
from each bank, V+1, V−1, equals the average of the voltages that are
fed into the bank, hence, inducing passive averaging. These voltages
can be written as

V+1[n] =

∑
j∈Pn,+1

xj [n]

|Pn,+1| , V−1[n] =

∑
j∈Pn,−1

xj [n]

|Pn,−1| ,

where Pn,+1 and Pn,−1 are the sets of channel indices being routed
to the +1 bank or −1 bank at sample index n, respectively. Thus,
we must rescale these voltages to obtain equivalent CMUX samples:

y[n] = |Pn,+1|V+1[n]− |Pn,−1|V−1[n].

While this could be achieved with two ADCs and gain components,
we can also invert the averaging scale factors not during measure-
ment, but during reconstruction. We simply compute the difference
of the two averages, y[n] = V+1[n] − V−1[n], and apply the aver-
aging weights in Φ during reconstruction. The system designer can
also calibrate the system by measuring the actual resistances along
each signal pathway; these non-ideal values turn our averages into
weighted averages.

The PA-CMUX relies on the fact that a single-channel ADC na-
tively computes the difference between two voltages. In a typical
setup, one of these voltages would be ground. However, in the PA-
CMUX we can use it to compute the difference between the two
averages.

3.4. Comparison with random demodulator

The CMUX compares favorably against the RD [1] on a number of
fronts. CMUX computational models are more accurate and easier
to calibrate due to absence of the analog filter. Additionally, since
summation is performed over the channels and does not take place
over time, the summation hardware is simpler. This sampling char-
acteristic translates to a relaxed requirement on individual CMUX
hardware components between samples (e.g. switching times); the
RD’s integrator enforces strict time-oriented performance require-
ments. Furthermore, the ability to bandpass sample significantly re-
duces the chipping and sampling frequencies for the CMUX as op-
posed to the RD. Even when ignoring the bandpass sampling issue,
the CMUX’s chipping sequences operate at a lower rate than the RD
for the same total bandwidth. As power requirements for these com-
ponents typically rise with the square of the frequency, a meaningful
savings is achieved.

The multi-channel nature of the CMUX also brings benefits. The
CMUX can grow its total bandwidth by adding channels without in-
creasing the chipping and sampling rates. In RF scenarios, splitting
the CMUX’s target bandwidth across multiple RF tuners matches
the fact that commercially-available tuners don’t produce arbitrar-
ily large bandwidths. And with access to multiple independent
tuners, the CMUX can also allocate its bandwidth capacity where it
is needed in the spectrum. The CMUX can also turn off unoccupied
channels to improve performance; at an extreme, the CMUX reverts
to a Nyquist sampler when all but one input channel is disabled.

There are of course some disadvantages. The CMUX undersam-
pling factor is more restricted than in the RD. This factor is fixed at
J − Joff , where Joff is the number of disabled input channels. Also,
non-idealities inherent to the RF tuners (or equivalent) means that
signals can fall out of coverage at channel edges.

4. ALGORITHMIC CHARCUTERIE
4.1. Trivial reconstruction

We can trivially produce an approximate recovery of any input chan-
nel i by multiplying that channel’s chipping sequence against the
output samples, i.e., x̂i = Φiy. It is clear from

x̂i = Φiy = Φi

(∑
j

Φjxj

)
= xi +

∑
i �=j

ΦiΦjxj , (7)

that this approach yields the original channel xj , plus a noise term
that is the sum of the other channels spread by a new ±1 sequence
ΦiΦj . Note that exact recovery is achieved when all non-zero coeffi-
cients are in a single channel. Furthermore, the trivial reconstruction
can either be used by algorithms resilient to noise (correlation rou-
tines, PLLs, etc.).

4.2. Block coordinate relaxation (BCR)

The trivial reconstruction technique can be extended to perform joint
reconstruction of all channels. One approach would be to approx-
imate one channel as above, transform and threshold to keep the
largest coefficients, subtract that channel’s contribution from the
measurements, and repeat this process with the other channels. In-
deed, this is roughly the procedure of block coordinate relaxation
(BCR) [11].

BCR provably solves the LASSO program

α = argmin
α

1

2
‖y −Aα‖22 + λ‖α‖1 (8)
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Fig. 3. Maximum number of channels J for fixed bandwidth N = JW = 5000.

when A is a union of orthonormal bases. For any ε in (3), there is
an appropriate choice of λ such that the solutions to (3) and (8) are
equivalent. We initialize by setting r = y and the initial estimate
α = 0. The remaining steps are as follows: i) Choose a new block
j ∈ {1, · · · , J}. ii) Subtract the contribution of the current estimate
(except from current block) from the measurements to update the
residual, r = y −A\jα\j . iii) Update the current block coefficients
by soft-thresholding the DFT coefficients of the trivial reconstruc-
tion, αj = S(AT

j r), where S(z) = z(|z| − λ)+/|z|, element-wise.

Note that for the CMUX, BCR uses exactly J FFTs and one
soft-threshold operation of dimension W per iteration. Most other
CS algorithms compute AT (y − Ax) in each iteration; thus these
algorithms will require at least twice as many FFTs per iteration.
Furthermore, the total number of iterations in BCR can be reduced
by adaptively adjusting λ [9].

The soft-thresholding step of BCR projects the current channel
estimate onto the �1-ball, thus “sparsely approximating” or “denois-
ing” the channel estimate. We can extend this algorithm to recover
non-integral frequencies, i.e., those oustide of the set of frequencies
defined by the length-W DFT, by employing spectral CS [12] or
BPDN-analysis [13] in place of soft-thresholding.

5. SIMULATIONS
5.1. Exactly sparse recovery

We wish to characterize the maximum number of channels required
for exact recovery of sparse signals in simulation and compare this
with the theoretical bound in Section 3.1. We fix N = JW = 5000
and vary K/N between 0 and 0.3. We perform 1000 reconstructions
using SPGL1 [14] for each choice of J and record the maximum J
such that 90% of the reconstructions yielded exact recovery.

Figure 3 demonstrates the results of this experiment. The dashed
line depicts the experimental performance for an ideal CMUX given
by (4); the dash-dotted line depicts the performance of the PA-
CMUX given in Section 3.3 with resistors deviating randomly up
to 20% from their intended values. The solid depicts the curve
J = N/(K log(N/K)) exactly, the best possible performance for
a CS system, (note that this is better than the bound given in Sec-
tion 3.1). This simulation demonstrates that in both cases, typical
CMUX behavior is close to an ideal CS system thus appears to out-
perform the theoretical guarantees.

5.2. Practical RF example

In this example we simulate two FM modulated voice signals, each
approximately 12 kHz wide. The voice signals live in two different
400 kHz wide channels. There are 5 total input channels, making
the total observed bandwidth 2 MHz. All channels have noise such
that the voice signals have an SNR of 30 dB.

PSDs of the signal in one channel are shown in Figure 4. The
original signal is depicted by solid lines, the trivial recovery is de-
picted by a dash-dotted line, and the CS recovery is performed with

Trivial Recovery
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Fig. 4. Power spectral density of one 12 kHz-wide signal.

BCR as described earlier. The plot demonstrates that the largest en-
ergy portion of the spectrum can be recovered, even by the trivial
method. However, the BCR recovery is significantly more accurate
and has a lower noise floor than even the original signal (due to its
more direct exploitation of sparsity).

6. DISCUSSION
In this paper we have introduced a compressive analog-to-digital
converter that caters specifically to multi-channel RF signals. The
key to our design is to code each channel and then combine them.
We apply multi-channel separation for sparse signals for recovery.
Our architecture permits simple calibration, requires only one ADC,
and supports practical techniques such as bandpass sampling.

The CMUX is analogous to coded digital communications
schemes such as code division multiple access (CDMA). Rather than
coding the signal with orthogonal codes and transmitting into the
same channel, we code the sensed channels and record them onto
the same samples. Of course one difference is that the data we sense
is analog, while in CDMA, the data is digital.

The CMUX also shares an interesting connection with compres-
sive distilled sensing (CDS) [15]. Suppose that we detect that only a
subset of channels have activity. We can then choose to disable some
of the channels signals, thereby increasing the SNR of the channels
of interest, a similar tradeoff to that found in CDS.
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