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Abstract—We consider the standard active array imaging
problem and propose a novel trade-off that enables the
imaging of range limited target scenes with far fewer
measurements than conventional techniques by exploiting
the bandwidth of the known excitation signal. Unlike
standard compressed sensing, we do not assume that the
scene is sparse, only that it is range limited. We abstract
the proposed method as a novel matrix sketching problem
that utilizes a few localized random projections in the
row space of a matrix to capture the full row space. We
provide mathematical guarantees on the number of such
projections required. We present imaging simulation results
that support our theoretical results.

I. INTRODUCTION

STANDARD coherent array imaging illuminates tar-
gets with a known waveform and images them by

measuring the reflections. The angular resolution of the
reconstructed image is a function of the aperture size
and the number of antenna elements used in the array.
To form a reconstruction at the highest resolution, a
number of measurements equal to the number of array
elements is required. However, the task of reading out
measurements from large densely sampled arrays is
challenging.

In this paper, we propose a novel trade-off that
utilizes excitation bandwidth to image range limited
target scenes with far fewer measurements compared
to conventional imaging techniques. This can have an
impact on both the cost of operating the array as well
as acquisition times. The decrease in the number of
measurements is a result of the reduced number of
degrees of freedom that range limited images induce on
broadband measurements.

We show that the proposed trade-off can be abstracted
as a novel matrix sketching problem: capturing the
range space of a linear operator using only localized
random projections of the range space. Localized random
projections are used in may scenarios such as stream-
ing, online, multimodal, and distributed data acquisition
where one can only partly access data at a given instant.
In particular, we consider a repeated block diagonal

Fig. 1: Array measurements as samples on a pseudopolar grid
in the Fourier domain (top). For an image at a constant range,
the array measurements at different frequencies are samples of
a common function (bottom)

matrix and provide conditions on the linear operator that
render this structured sketching matrix as effective as a
general unstructured sketching matrix.

Our model focuses on far-field antenna array imaging.
Antenna array measurements of far-field targets (mag-
nitude and phase) are direct samples of the Fourier
domain of the target scene. Figure 1 (top) shows the
area in the Fourier domain that is sampled as a result of
signal acquisition in the case of a 1D array. For general
range limited scenes, the functions sampled at different
frequencies (Figure 1 (bottom)) have a limited number
of degrees of freedom. In the extreme case of a scene
with delta thickness (only one reflector per angle), the
functions sampled at different frequencies are the same.
For such a scene, when a full read-out is performed at the
frequency the array is designed for (inter-element spac-
ing of c/2f where c is the speed of light), measurements
at lower frequencies offer redundant information. For
general range-limited scenes, the number of degrees of
freedom of the ensemble of samples at lower frequencies
is limited. In general, the number of degrees of freedom



(a) full imaging (b) 320 beams

(c) 160 beams (d) 80 beams

Fig. 2: Aperture coded imaging for images at a constant range.
(a) represents the conventional method, which uses about 1100
beams

decreases as the range limit decreases (see Figure 1
(bottom) ). This redundancy can be used to spatially
subsample the array while using broadband excitation.

Figure 2 provides an illustration of the effectiveness
of the proposed scheme. A target scene at a constant
known depth that typically requires about 1100 measure-
ments/beams when imaged using narrowband excitation
can be imaged with only roughly 80 beams with no loss
in resolution, when broadband excitation is used. The
setup used for this simulation is described in Section V.

We provide the following theoretical results: (i) a
lower bound on the number of measurements needed
for a given excitation bandwidth (Theorem 1) and (ii)
conditions on a set of k excitation frequencies that
can result in fewer measurements by a factor of k.
We then provide simulation results for some imaging
experiments that support our proposed trade-off and
theoretical analysis.

This paper is organized as follows. In Section II,
we review the available literature on the two main
relevant areas: coherent imaging and matrix sketching. In
Section III, we develop the model for our proposed array
signal acquisition method. In Section IV, we provide
signal recovery guarantees for the proposed method.
The theoretical results are also of general interest in
the matrix sketching field. In Section V, we provide
simulation results for various imaging experiments.

II. RELATED WORK

In this section, we review the work most related to
this paper. Our work is targeted towards efficient array
processing and uses techniques from numerical linear
algebra to provide recovery guarantees. We provide
references to both of these fields below.

A. Array imaging

Standard array imaging problems have been consid-
ered in [1], [2] where the inverse problem is set up using
transmit and receive beamforming with narrowband ex-
citation. General 3D imaging with wide-band excitation
is considered in [3]. In general, to identify a 3D scene, a
2D antenna array and broadband excitation are necessary.
We identify the limited number of degrees of freedom
in a range limited image and show that such a scene
can be captured using far fewer measurements compared
to conventional methods. Efficient array processing has
been an active area of research, in order to reduce the
operating costs of antenna arrays. By using a carefully
designed non-uniform array, [4] proposes to increase
the number of resolvable directions to O(N2) by using
an array with O(N) elements. Another main theme in
reducing the cost of array systems has been the use
of compressed sensing techniques. Reducing sampling
rates at the sensors for digital beamforming is proposed
in [5]–[7], but the number of beams/ array elements
remain the same as conventional imaging. Sparsity based
regularization is imposed in [8] to solve the ill-posed
radio-interferometric imaging problem. A similar theme
is also followed in [9] which addresses the problem of
3D imaging with a 2D phased array, but assumes sparsity
in the image domain. We do not assume any sparsity in
the image domain and directly address the number of
measurements/beams required to obtain the best possible
reconstruction.

Array imaging of range limited images is a particular
example of an application that concerns simultaneous
concentration of a signal in temporal/spatial domain and
frequency domain. Analysis of the number of degrees
of freedom of such signals was performed in [10]–[13]
and [14], [15]. Our observation of the reduced number
of degrees of freedom in the context of array imaging
stems from these papers.

B. Matrix sketching

We show that our proposed method can be modeled
as a novel matrix sketching problem. Matrix sketching
refers to a set of techniques in numerical linear algebra
for dimensionality reduction. In particular, a given large
matrix is pre/post multiplied by a suitable matrix to
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reduce the ambient dimensions while still approximately
preserving important information. Research in this area
has seen a rise in popularity due to its utility in the
big data setting [16], [17]. Our theoretical results are
more aligned with those in [18] where random Gaussian
projections are used to capture the range space of linear
operators. In the context of imaging, usage of sketching
ideas can be seen in [19] where the Fourier basis is
used as a sketching matrix for dimensionality reduction
in interferometry but the sketching matrix in their setup
is a generic rectangular sketching matrix. In our pro-
posed model, the sketching matrix involved itself has a
very particular structure that is dictated by the physical
antenna array setup, which introduces new challenges.

III. SIGNAL MODEL

A. Array imaging setup

In this section, we describe the standard linear model
for far-field imaging. We present here the model for a
1D array, which can be easily extended to 2D arrays.

Consider a uniform linear array of aperture length D
consisting of M elements placed on the X-axis at loca-
tions −dM/2 . . . , dM/2 ∈ [−D/2, D/2]. The scene to be
imaged lies in the X-Y plane and in the far-field region
of the array. Let the reflectivity map, a function of the
round-trip distance of the target from the array center and
the angle from the broadside, be denoted as p(r, θ). The
system consists of only one transmitting element which
is co-located with the receiver at the array center. This
system can hence be classified as single-input multiple-
output (SIMO). For an excitation signal s(t), the output
of the mth element is s(t−r0/c−dm sin θ0/c), for a unit-
strength reflector at (r0, θ0). For a general reflectivity
map within a range limit R, the narrowband response
for an excitation signal ej2πft is

ym(t) = ej2πft

π/2∫
−π/2

∫
R

p(r, θ)e−j2π(r+dm sin θ)/λ dr dθ.

(1)

The reflectivity map can be deduced using the wave-
length dependent amplitude of the received signal. By
letting τ = (sin θ)/2, the output of mth element at
excitation wavelength λ can be written as

ym(λ) = x̂c (ωr, ωτ ) , ωr =
1

λ
, ωτ =

2dm
λ

(2)

where x̂c is the Fourier transform of xc(r, τ), xc(r, τ) =
p(r,sin−1(2τ))√

1−4τ2
in in the continuous domain.

For computational purposes, we discretize the scene
as vector of uniformly placed points. The ensemble

of measurements collected at different frequencies is
shown in Figure 1 (top). The antenna imaging system
at excitation frequency f can be modeled as yf = Afx0

where x0 is the scene reflectivity at the sampled points,
Af is the matrix mapping the scene to the array outputs
and yf is the vector of array outputs. Af ∈ CM×N where
N is the number of spatial samples and M is the number
of array elements. With multiple excitation frequencies,
array measurements of length M are obtained at each
frequency. Let the array output at frequency fi be yfi
and the corresponding matrix operator be Afi. Letting
y = [yTf1 yTf2 · · · yTfk]T and A = [ATf1 ATf2 · · ·ATfk]T ,
the imaging system with multiple frequencies can be
modeled as

y = Ax0. (3)

B. Proposed measurement model

The array outputs can be acquired in a variety of ways.
One way is to perform a direct read-out of the array
as (3) shows. Another standard approach is to obtain
specific linear combinations of the array outputs. When
the linear combinations induce spatial directivity, the
procedure is termed beamforming and the antenna array
scans over the scene. This can be modeled as

zfi = ψyfi = ψAfix0 (4)

where ψ is an M×M matrix with each row representing
one set of weights.

Both the above schemes obtain M measurements to
obtain the best possible resolution: either M direct read-
outs from the antenna array or M beams in beamform-
ing.

Our proposed method is to obtain fewer generic
linear combinations or coded aperture measurements
at multiple frequencies. Let φ ∈ Rl×M matrix where
each of the l rows represent a set of weights used to
form a linear combination of the array outputs. Each
linear combination corresponds to one generic beam. The
sampled value is a linear combination of the element
outputs just as in spatial beamforming. A single set
of weights can be used to obtain measurements at all
excitation frequencies by using broadband excitation
and taking a temporal Fourier transform. However, this
imposes that the same set of aperture codes be used at
all frequencies. One measurement would correspond to
obtaining a linear combination with a fixed set of weights
of each row of points in Figure 1 (top). This results in
the following model:

Φy = ΦAx0 = Y x0, (5)
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where Φ is a block diagonal matrix with k repeated
blocks, as shown below

Φ =

φ 0 · · · 0
0 φ · · · 0
0 0 · · · φ

 . (6)

We refer to such a matrix as a repeated block diagonal
(RBD) matrix. Even though we obtain compressive mea-
surements, unlike standard compressed sensing regimes,
we do not assume any sparsity in the target scene.
Integrating further structure in the target scene will
of course result in better sample complexity. But our
intention is to study just the range limited model. We
will use the ordinary least squares reconstruction

arg min
x
‖y −Ax‖22. (7)

With aperture coding in place, this becomes

arg min
x
‖Φy − ΦAx‖22. (8)

Our goal is to show that the solutions of (7) and (8) are
equal for range limited images, for l < M .

IV. SIGNAL RECOVERY GUARANTEES

In this section, we consider the general problem (8)
and derive bounds on the number of random projections
in each diagonal block l required to faithfully solve it.
Let ri denote the rank of Ai. If l ≥ maxi ri, it is straight-
forward to see that the solutions of (7) and (8) match.
We are interested in sharper bounds for l. In general, if
Φ is such that the rowspaces row(ΦA) and row(A) are
the same, then (7) and (8) have the same solution. A
necessary and sufficient condition is for the rowspaces
to be equal is:

‖(I − PA∗Φ∗A∗)‖ = 0, (9)

where PM denotes the orthogonal projection onto the
columnspace of range of M .

Repeated block diagonal matrices can provide only
local random projections of the row space of A. Our
main insight is that when row spaces of Ai’s are not
orthogonal, localized random projections in the row
space of Ai provide information about the row spaces of
Aj , j 6= i as well. This translates to a lack of degrees
of freedom in the ensemble of points in Figure 1 (top).
Linear combinations of a row of points in this ensemble
provide information about the samples in other rows as
well (corresponding to different frequencies).

We present two main results in this section: (i) A
simple, but non-trivial lower bound on l for which (9)
holds, and (ii) A sufficient condition on a given ensemble
{Ai}, i = 1, · · · k for which l ≥ dr/ke suffices for (9)

to hold, where r is the rank of A. Note that dr/ke is a
fundamental lower bound on l.

To establish the first result, we factorize the linear
operator to reveal the dependence between the row
spaces of Ai:

A =


A1

A2

·
Ak

 =


C11 0 · · · 0
C21 C22 · · · 0
· · · · · ·

Ck1 Ck2 · · · Ckk



V T1
V T2
·
V Tk

 = CV T ,

(10)
where Cij ∈ Rm×dj and each Cii is full column rank
when di 6= 0, V is an r × n orthonormal matrix. The
factorization is such that the row space of A1 is the span
of the orthobasis V1, the row space of A2 is included
in the span of V1 and V2. In general, [V1 V2 · · ·Vi]
includes an orthobasis for the row space of Ai. This
factorization is equivalent to a block QR factorization
of AT and can be obtained for any general matrix A.
Each di represents the innovation that a new group Ai
adds to the row space of the already existing ensemble
{Ai}, j < i. Note that

∑
i di = rank(A). Our first result

states that if l ≥ maxi di, then (9) holds true.
Theorem 1: For a given matrix A of size km × n,

let di’s be defined as in (10) and let p be a small
oversampling factor. Let Φ be a block diagonal matrix
with repeated diagonal block φ of size l × m and
whose entries are chosen i.i.d. from the standard normal
distribution. Let Y = ΦA. Define d0 = maxi di. For

l ≥ d0 + p (11)

‖(I − PY ∗)A∗‖ = 0 with probability 1.
Theorem 1 shows that a number of random projections

greater than the innovation that each new operator Ai
offers suffices to capture the union of subspaces of all
Ai’s. In other words, a given set of localized random
projections φAi need not capture the entire row space
of any Ai. If the subspaces row(Ai) overlap, a linearly
independent set of vectors that capture the row space of
the whole matrix can be obtained by using a few random
projections of each row group. The factorization in (10)
captures this dependence between the subspaces spanned
by the row groups.

This result is particularly useful when row(Ai) ⊂
row(Aj) ∀i < j. If the overlap between the subspaces
is not considered, l ≥ maxi rank(Ai) =

∑
i di random

projections per block would be necessary. However, as
seen from 1, fewer projections may be sufficient. On the
other hand, when the row spaces are all mutually orthog-
onal, then Theorem 1 clarifies that l ≥ maxi rank(Ai)
is necessary.

In the context of array imaging and a scene at a known
constant depth, the ensemble {Ai} has the favorable
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Fig. 3: Comparison of the sample complexity l required to capture the row space using a generic sketching matrix and a RBD
sketching matrix. The entries of the sketching matrices are all drawn from the standard Gaussian distribution. While using an RBD
matrix for sketching, the favorable case realization of A obeys the condition required by Theorem 2 while the adverserial case
realization of A does not.

nested subspace structure with the corresponding di’s
being equal to 2A(fi − fi−1)/c where fi, fi−1 are
consecutive excitation frequencies, A is the aperture size.
Similarly, d1 = 2Afmin/c where fmin is the smallest
excitation frequency used. If consecutive frequencies are
placed close enough, a simple estimate of the number
of aperture codes required is proportional to fmin. This
is lower than that of conventional imaging, where the
number of beams used is proportional to fmax.

Although the estimate provided by Theorem 1 im-
proves over conventional imaging techniques, depen-
dence on the smallest frequency can be further improved.
We now present our second main result. Suppose that
Φ was a general sketching matrix and rank(A) = r.
Then, a total number of random projections greater than
r would suffice for (9) to hold. It is then natural to ask
if kl ≥ r suffices when Φ is an RBD sketching matrix.
We answer this question in the following theorem. For
the sake of convenience, we assume that r = nk for
some integer n, but the result holds in general, with the
condition l ≥ r/k replaced by l ≥ dr/ke.

Theorem 2: Given an ensemble of k matrices {Ai}
each of size m × n and a matrix φ ∈ Rl×m with
entries drawn from the standard normal distribution,
M =

[
(φA1)T (φA2)T · · · (φA1)T

]T
is full row

rank if there exists an orthobasis V in Rm and an index
set S, S ⊂ [n], |S| = l such that the kl × n size matrix
M̂ =

[
(VSA1)T (VSA2)T · · · (VSAk)T

]T
has full

row rank. Consequently, if these conditions are met for
l ≥ r/K, ‖(I − PMT )AT ‖ = 0 with probability 1.

Intuitively, since the structure of Φ imposes the same
set of random projections on each block, in order to
obtain linearly independent random projections, the cor-
responding rows of Ai’s should themselves be linearly
independent. If there still exists a set of correspond-
ing rows that are linearly independent modulo a basis
change, the number of random projections l required can
be very low when the row spaces of Ai overlap to a high
degree.

Figure 3 shows a simulation result that compares the
total number of random projections needed by a generic
sketching matrix to that of an RBD sketching matrix. For
the simulation, k = 10 was used, with rank(A) = 50
In the latter case, two different linear operators A were
generated, one that obeys the conditions of Theorem 2
and one that does not. We can see from the figure that
the sample complexity l does depend on the matrix A.

V. NUMERICAL RESULTS

We test our proposed model by simulating various
imaging scenarios. Array parameters used in all the
simulations are: an array of 40 × 40 elements, with 15
excitation frequencies placed regularly in the bandwidth
of 2GHz - 4GHz. The elements were placed at half
the wavelength of the highest frequency. The scene was
assumed to be within the angular span of [−π/4, π/4]
in both directions. For this configuration the full set
of measurements would be approximately around 1100.
Quantitative error values for all the experiments are given
in Table I.
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Fig. 4: Depth map of the multi-depth image used in simulations

In the first set of experiments, we consider a scene
with delta thickness at a constant, known depth. Con-
ventional beamforming requires about 1100 beams with
excitation using fmax (4GHz) to scan over the entire
image. Image reconstruction results are shown in Figure
2. We can see that using as few as 80 beams with
broadband excitation, similar reconstruction performance
can be obtained. The relative reconstruction error is
almost negligible in each case (shown in Table I).

Aperture coding is also effective for multi-depth im-
ages, where reflectors at different angles maybe present
at different depths. A scene with three segments, each at
a different depth was used in our simulations. The depth
map of the scene is shown in Figure 4.

(a) full imaging (b) 320 beams

(c) 160 beams (d) 80 beams

Fig. 5: Aperture coded imaging for a multi-depth image. (a)
represents the conventional method, which uses about 1100
beams.

Figure 5 shows reconstruction results for the multi-
depth scene considered. Again only about 80 beams are

(a) full imaging (b) 320 beams

(c) 160 beams (d) 80 beams

Fig. 6: Aperture coding in the presence of noise. The regular-
ization parameters was varied in each case to match the SNR of
the full imaging scenario. The noise performance was preserved
without compromising on the signal reconstruction quality, as
seen in table II.

sufficient to get good quality results. For such images,
even though the points along different rows in Figure 1
are different, they have few degrees of freedom.

We further test our proposed acquisition scheme under
noisy regimes. Figure 6 shows reconstruction results
in the presence of noise with an SNR of 20dB . The
corresponding signal reconstruction error values and
output SNR are given in Table I. It is clear that aperture
coded measurements do not result in any degradation
in the presence of noise. This shows that the sketched
matrix is not only full rank, but also has stable singular
values.

Drawing further inspiration from techniques in nu-
merical linear algebra, we conducted simulations with
subsampled arrays instead of using codes drawn from the
Gaussian distribution. Subsampling the rows/columns
instead of taking random projections is a common
technique of dimensionality reduction [20]. This can
be thought of as aperture coding with binary codes.
Reconstruction error values obtained are shown in Table
II. We can see that subsampling an array is as effective
as using a full array when broadband excitation is used.

These results demonstrate that range limited target
scenes induce a finite number of degrees of freedom on
the ensemble broadband array measurements. The array
imaging operators associated with such scenes allow for
a stable reconstruction from compressive or subsampled
measurements without any structural assumptions on the
scene such as sparsity. The proposed trade-off with exci-
tation bandwidth can be readily implemented in existing
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Imaging mode Constant range Flat image Multi-depth
Constant range noisy

Signal error OP SNR

Full imaging (1100 beams) NA NA NA NA 16.09

320 codes 2.7e-5 4.4e-4 3e-4 2.5e-5 16.0117

160 codes 7.4e-5 3.3e-4 1.2e-3 6.3e-5 15.9112

80 codes 4.2e-4 5.1e-4 4.8e-2 4.9e-4 15.3206

TABLE I: This table shows the relative reconstruction error values for different classes of images. Aperture codes with weights
chosen from standard Gaussian distribution were used.

array imaging systems which are typically broadband
and hence is an effective way of imaging range limited
scenes.

Imaging mode CR FS MD

320 elements 2e-4 1e-4 1e-3

160 elements 9e-4 4e-4 3.1e-2

80 elements 1.6e-3 1.1e-3 5.8e-3

TABLE II: Relative reconstruction errors with subsampled ar-
ray: The array was randomly subsampled to have 320, 160 and
80 elements. CR: constant range image, FS: Flat image, MD:
Multi-depth image
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