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Abstract

Error Control for Support Vector Machines
by

Mark A. Davenport

In binary classification there are two types of errors, and in many applications
these may have very different costs. We consider two learning frameworks that ad-
dress this issue: minimax classification, where we seek to minimize the maximum
of the false alarm and miss rates, and Neyman-Pearson (NP) classification, where
we seek to minimize the miss rate while ensuring the false alarm rate is less than a
specified level α. We show that our approach, based on cost-sensitive support vector
machines, significantly outperforms methods typically used in practice. Our results
also illustrate the importance of heuristics for improving the accuracy of error rate
estimation in this setting. We then reduce anomaly detection to NP classification
by considering a second class of points, allowing us to estimate minimum volume
sets using algorithms for NP classification. Comparing this approach with traditional
one-class methods, we find that our approach has several advantages.
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Chapter 1

Introduction

The goal of any learning algorithm is to formulate a rule, or classifier, that gen-

eralizes from the given data to new situations in a “reasonable” way. Specifically,

given a sample of training vectors x1, . . . ,xn ∈ Rd along with corresponding labels

y1, . . . , yn ∈ {−1, +1}, we aim to find a function f : Rd → {+1,−1} that “accu-

rately” predicts the label when presented with a new feature vector, where accuracy

is usually equated with having a small probability of error.

However, there are two distinct types of errors, and in many important applica-

tions these may have very different costs. In tumor classification, for example, the

impact of mistakenly classifying a benign tumor as malignant is much less than that

of the opposite mistake. Furthermore, even if the two types of errors have compa-

rable costs, we would often prefer to avoid classifiers that perform much better on

one class than the other. This is particularly a problem when we have many more

training samples from one class than from the other, since algorithms that attempt

to minimize the probability of error will tend to place less emphasis on the smaller

class.
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1.1 Cost-Sensitive Learning

We shall explore two related frameworks for addressing these challenges. In the

minimax framework we seek to minimize the maximum of the false alarm and miss

rates. This criterion is a natural goal in the absence of any knowledge about the prior

probabilities for the two classes, as it will avoid classifiers that perform much better

on one class than the other. Alternatively, in the Neyman-Pearson (NP) framework

the user sets a target false alarm rate α, and the goal of the algorithm is to minimize

the miss rate subject to the condition that the false alarm rate is no greater than α.

This classical approach is also quite natural in many settings, especially when one

class is more or less important than the other. The two frameworks are related in

that they both attempt to design classifiers that operate at a specific point of the

receiver operating characteristic (ROC) curve, but differ in how the specific point is

chosen. In NP classification, the user selects the point through α, while in minimax

classification α is automatically chosen to obtain equal false alarm and miss rates.

In contrast to the two-class problems described above, anomaly detection is inher-

ently a one-class problem in that we are only able to observe data from a single class.

Given such training data, we aim to estimate a classifier that discriminates between a

typical feature vector (corresponding to the observed class) and an anomalous feature

vector. A natural approach here is to estimate the minimum volume set (MV-set),

which is roughly the set with the smallest volume among all those containing a frac-

tion of at least β of the observed data, where β is a parameter set by the user. We
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show that it is possible to use an NP classification algorithm to estimate an MV-set

by artificially generating a second class of points that serves as an estimator for the

volume of candidate MV-sets.

Traditional wisdom holds that we should be able to solve all of these problems by

simply applying the “cost-sensitive” extensions that exist for many common classifica-

tion algorithms. These algorithms seek to minimize a more general “misclassification

cost” rather than the probability of error. For example, support vector machines

(SVMs) – a powerful, kernel-based method for classification – can be modified to do

this by introducing an additional parameter that that penalizes errors from one class

more than the other. The challenge is that in practical settings like those described

above, we have specific error rates we would like to achieve, i.e., we wish to operate at

a specific point of the ROC. Obtaining this performance will require that we set the

additional parameter appropriately. This work highlights the importance of accurate

error estimation in solving these problems – it is precisely the ability of an algo-

rithm to leverage accurate error estimation techniques to adjust the free parameters

appropriately that will determine whether an algorithm will be able to give us the

desired performance. Furthermore, in comparing different algorithms we emphasize

that great care should be taken to ensure that we use a performance measure that is

truly meaningful for the problem of interest.
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1.2 Minimax Learning

First, we consider the traditional binary classification setting. Hence, we assume

that when yi = +1, xi is drawn from Q+ and when yi = −1, xi is drawn from Q−,

where Q+ and Q− are unknown probability measures. Let f : Rd → {+1,−1} be a

classifier, and let

PF (f) = Q−({x : f(x) = +1}) = Pr(f(x) = +1|y = −1) and (1.1)

PM(f) = Q+({x : f(x) = −1}) = Pr(f(x) = −1|y = +1) (1.2)

denote the false alarm and miss rates of f , respectively.

As an example, suppose that our two classes represent patients with two different

types of cancer. In the absence of some prior information about these classes, such as

the relative frequencies or severity of the two types, we have no reason to favor one

class over the other. However, unless we have exactly the same number of training

vectors from each class, minimizing the probability of error will implicitly do exactly

that – assigning more weight to the class with more training vectors. For this reason

(among others), many researchers prefer to use classifiers operating at the the break

even point (BEP) or equal error rate (EER) (where PF (f) = PM(f)). See, for exam-

ple, [1,27]. Of course, if an algorithm is sufficiently flexible, it is possible that it may

yield many classifiers satisfying this constraint. We seek the best one possible, which

we shall denote the minimax classifier. Specifically, the minimax classifier is defined
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as

f ∗mm = arg min max
f

{PF (f), PM(f)}. (1.3)

In order to adapt SVMs to estimate the minimax classifier, we will obtain estimates

of PF (f) and PM(f) for different parameter settings, and then select the “optimal”

parameters according to (1.3). An alternative kernel-based approach to minimax

classification is that of the so-called minimax probability machine (MPM) [15]. We

compare these methods as well as additional SVM-based approaches in detail in Chap-

ter 3.

The minimax framework has two major advantages with respect to conventional

classification criteria that seek to minimize an expected misclassification cost. First,

assigning the costs appropriately is often difficult (see [2,20]). Second, unlike efforts to

minimize a misclassification cost, the minimax framework does not implicitly assume

knowledge of the prior probabilities of the two classes. This is extremely important in

applications where the class frequencies in the training data do not accurately reflect

class probabilities in the larger population. In fact, it could be argued that most

classification problems of interest fit this description.

1.3 Neyman-Pearson Learning

In the minimax setting we are concerned with the challenges posed by unknown

prior probabilities and potentially disparate costs for the two types of errors. An

alternative approach to addressing these two challenges is through the NP paradigm.
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NP classification is typically motivated by describing situations where errors from one

class are much more costly than errors from another class. As an example, suppose

now that the positive class represents patients with cancer and the negative class

represents patients without cancer. Here a miss corresponds to failing to detect

cancer that is present in a patient, while a false alarm corresponds to detecting

cancer when it is not actually present. Clearly, the cost associated with a miss is

much different than that associated with a false alarm. In this case we might only be

able to tolerate a certain level of false alarms, in which case we would want to have

the lowest miss rate possible provided the false alarm rate satisfies some constraint.

This approach corresponds to the goal of the Neyman-Pearson (NP) classification

framework. Specifically, given a user-specified significance level α, the NP-optimal

classifier is defined as

f ∗α = arg min
f :PF (f)≤α

PM(f). (1.4)

Figure 1.1 illustrates an example of an estimate of such a classifier.

The NP framework shares the same advantages over conventional cost-sensitive

classification approaches as the minimax framework. Specifically, specifying a de-

sired false alarm rate is typically more natural than assigning the costs, and the NP

framework does not implicitly assume knowledge of the prior probabilities of the two

classes. See the theoretical analysis provided in [25] for a more in-depth discussion of

NP classification. Building on the initial results published in [11], we illustrate that

SVMs can be adapted to this setting through the use of the same techniques used to
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Figure 1.1: Estimated Neyman-Pearson classifier for “banana” data set (α = 0.1).

adapt SVMs to the minimax setting, providing an efficient and practical algorithm for

NP classification. While similar to our approach to minimax classification, there are

important differences in both the methods for parameter selection and performance

evaluation since in the NP setting we wish to attain a specified false alarm rate.

1.4 Anomaly Detection with Minimum-Volume Sets

We now consider the problem of anomaly detection, where we are only given

training vectors from only one of the two classes – the normal, or typical class. Our

goal is to use this data to find a classifier that categorizes new feature vectors as

being either normal/typical or abnormal/anomalous without ever observing any ab-

normal/anomalous data. For example, in machine fault detection, we would like to
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predict when a machine is about to fail, but cannot gather data from a failed machine

because it would entail breaking the machine. In addition, even in cases where we do

observe anomalous data, it is often difficult or impossible to identify the anomalous

training vectors a priori. In essence, we would like to be able to detect anomalies

without knowing what they look like.

We can think of our classifier as defining a subset of Rd such that the points inside

the set correspond to typical samples, while points outside the subset are anomalies.

We want this set to contain most of the typical samples, but be as small as possible

so as to maximize our chances of detecting an anomaly. Specifically, let β ∈ (0, 1)

be given and suppose P is the probability measure governing the typical data and µ

is a known reference measure. We would like to estimate the minimum volume set

(MV-set)

G∗
β = arg min{µ(G) : P (G) ≥ β, G measurable}, (1.5)

or in other words, we want to find the set of minimum volume (as measured by µ)

among all those containing a fraction of at least β of the probability mass of P . The

parameter β is chosen by the user and reflects a desired false alarm rate of 1− β.

We can interpret MV-sets in a number of ways. First, MV-sets summarize regions

where the mass of P is most concentrated. For example, if P is a multivariate

Gaussian distribution and µ is the Lebesgue measure, then the MV-sets are ellipsoids.

Furthermore, MV-sets are density level sets, with β defining a density level and vice-

versa. See [12, 19, 22, 26, 38] and references therein for additional discussion. We can
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Figure 1.2: Estimated minimum volume set for “banana” data set (β = 0.9).

also view the reference measure µ in multiple ways: either as our definition of volume

on Rd or as a prior on the distribution for anomalies. In this light, taking µ to be the

Lebesgue/uniform measure can be interpreted as assuming a noninformative prior on

anomalies. Thus, in this thesis we focus on the common case where µ is the Lebesgue

measure, although most of our techniques extend easily to other measures.

Hence, our task is the following: given n realizations of a distribution P , a reference

measure µ, and β ∈ (0, 1), construct a set Ĝβ that approximates the true MV-set

G∗
β. An example of such a set is shown in Figure 1.2. Since MV-sets are density

level sets, one possible approach to MV-set estimation is to use the so-called one-

class SVM (OC-SVM) [22, 31] to estimate the appropriate level set. Our application

of the OC-SVM entails carefully setting the free parameters to achieve the desired
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mass/volume tradeoff. Alternatively, we may reduce MV-set estimation to Neyman-

Pearson (NP) classification as described in [26]. Specifically, to estimate the MV-set

using NP classification, we can think of setting Q− = 1 − P and Q+ = µ. In this

case the MV-set and NP classification solutions coincide. (If α = 1 − β and f ∗α is

the optimal NP classifier, then G∗
β = {x : f ∗α = −1}.) To implement this idea we

assign the observed training vectors, {xi}n
i=1, labels of −1. We then draw a set of new

training vectors according to µ, and assign these points labels of +1. Constraining

PF (f) ≤ α = 1− β, ensures that the probability mass of the set where f(x) = −1 is

at least β, and since we draw the positively labeled class from µ, minimizing PM(f)

is equivalent to minimizing an estimate of µ({x : f(x) = −1}). Hence, by taking our

MV-set to be Ĝβ = {x : f̂α(x) = −1} we can estimate the MV-set of our data using

NP classification algorithms. This idea was initially explored in [12].

The idea of reducing a supervised problem to an unsupervised problem by sam-

pling from a reference measure has apparently been known for some time [14]. Al-

though they do not speak in terms of “Neyman-Pearson classification,” the reduction

outlined above is essentially described in [33]. The two-class idea was also applied

in [30] to reduce density level set estimation to cost-sensitive classification. In a kind

of hybrid between one- and two-class methods, [32] employs artificial uniform data to

select the parameters of the OC-SVM.

The OC-SVM has recently been proven to be a universally consistent estimator of

density level sets [36], and from the consistency results of [29] for the two-class SVM,
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we can see that the NP approach is consistent as well. However, it is not immediately

apparent which method will be superior with finite sample sizes. A key challenge in

both approaches is that they require the generation of realizations from the reference

measure µ. In the case where µ is the Lebesgue measure, it suffices to draw points

uniformly from some hypercube containing the data, with some extra care necessary

when dealing with discrete-valued data. In the OC-SVM approach, we use this data

to adjust free-parameters appropriately. In the NP approach we train our SVM using

the data, and thus in this case we must limit the number of realizations from µ to

control training time. Thus in the NP setting, independent generation of the uniform

data may suffer because P may be concentrated in a very small volume of space.

Furthermore, in high dimensions, the average interpoint distance increases, and more

and more of the simulated points will be so far from the data as to be useless in

estimating the volume. This effect can be viewed as one aspect of the “curse of

dimensionality”.

We consider two methods for overcoming these challenges. The first involves

drawing many more points than are ultimately desired and then adaptively removing

points, or thinning, to obtain the desired number of points. This approximately

results in a “packing set” with a large minimum distance between neighboring points.

While thinning does offer a significant gain with respect to independent uniform

sampling, it does not account for the “vastness of space” in high dimensions. A

second approach, which we call manifold sampling, does address this concern and

11



also adapts to potential manifold structure in the data.

1.5 Cost-Sensitive SVMs

SVMs are a powerful kernel-based classification method which can be extended to

the cost-sensitive setting by introducing an additional parameter that penalizes the

errors asymmetrically. This approach has been taken by several authors to develop

cost-sensitive versions of the C-SVM, and a closely related algorithm, the ν-SVM

(for example, see [5, 6, 17, 18, 35]). We shall refer to these extensions as the 2C-SVM

and the 2ν-SVM respectively. It was shown in [17] that the C-SVM and ν-SVM are

equivalent in the sense that they explore the same set of potential classifiers as their

free parameters (C and ν) are varied. We extend this result to show that the same is

true of the 2C-SVM and the 2ν-SVM.

The challenge in adapting either of these extensions to minimax or NP classifica-

tion is that we cannot know a priori how to set the relative costs in order to achieve

the desired false alarm and miss rates. The way around this problem is to estimate

the error rates for a grid of possible values of the cost parameters using an error

estimation method such as cross-validation, selecting the parameters which yield the

desired performance. Obviously this error estimation process is critical to achieving

the desired false alarm and miss rates.

With this in mind, we argue that the 2ν-SVM has several advantages over the 2C-

SVM. In particular, the 2ν-SVM can be formulated so that its two free parameters,

12



ν+ and ν−, each lie in the interval [0, 1], which is not possible for the 2C-SVM. This

makes the starting points, ending points, and spacing for any grid search much less

arbitrary. Furthermore, a number of heuristics for improving the parameter selection

process are more natural in this setting. Therefore we will restrict our attention to

the 2ν-SVM, although many of our conclusions would likely hold for the 2C-SVM as

well.

1.6 Performance Evaluation

Suppose we have two classifiers (e.g., two SVMs with different parameter settings)

and compute empirical estimates of the false alarm and miss rates for each. Which

classifier should we choose? In some cases there may be an expert who can decide.

But what if no expert is available? Or, what if we want to compare two learning

algorithms across several datasets? Even if an expert is available, experts usually

cost money or have limited time, and their decisions may be subjective or prone to

human error.

While it seems desirable to have an objective measure for evaluating and compar-

ing the trained classifiers, most papers proposing algorithms for cost-sensitive classi-

fication or anomaly detection do not adopt a systematic methodology for comparing

different algorithms. The typical paper introduces a new algorithm and provides

an ROC curve that conveys the ability of the algorithm to trade off false alarms

for misses. An algorithm is said to dominate another algorithm if its ROC curve

13



is always equal to or above the other. For example, in Figure 1.3(a) algorithm A

clearly dominates algorithm B. One clear problem with using ROC curves to measure

performance is that in practice no single algorithm will dominate the others, as is

illustrated in Figure 1.3(b). To compare two or more algorithms we really need a

scalar performance criterion. The most common such criterion is the area under the

ROC curve (AUC). Numerous studies indicate the advantages of AUC maximization

over misclassification rate minimization, even when the final objective is to minimize

misclassification rate [2, 8, 20,21].

However, in most practical settings – including many of the settings commonly

used to motivate the use of the AUC – we really want to operate at a specific point

on the ROC curve, and unfortunately there is no oracle to tell us how to set the

free parameter(s) in the algorithm to achieve this point. In other words, the AUC

evaluates a family of classifiers (that trace out an ROC), but it does not recommend

a particular member of that family. For example, in NP classification or MV-set

estimation, we have a target false alarm rate (α) at which we hope to operate. In this

case, it does not matter if an algorithm has a slightly higher ROC curve or AUC if the

algorithm gives us little control over where on the ROC curve we actually operate.

As an example, in Figure 1.3(c) algorithm A dominates algorithm B, but we are able

to tightly control the false alarm rate with algorithm B, while with algorithm A we

can greatly exceed the desired level. In this case it seems clear that even though

the AUC of algorithm A exceeds that of algorithm B, algorithm B is actually the

14



better choice for our purposes. While this may seem unlikely, it has been observed

in practical settings, with extremely negative consequences for the case of minimax

classification in particular, as described in [1]. In summary, in evaluating a specific

algorithm, we need to ask not only “Can we trade off false alarms for misses?” but

also “How precisely can we guarantee a desired false alarm (or miss) rate?”

Thus, in the case where we desire a specific false alarm rate, as in NP classifica-

tion or MV-set estimation, we advocate a new performance measure for comparing

alternative algorithms [24]. In the minimax classification problem we simply argue

that one should do the obvious, use the maximum of the false alarm and miss rates,

rather than the often used error rate or AUC. Our emphasis on a systematic compar-

ison highlights the importance of error estimation to cost-sensitive classification or

anomaly detection problems. Not only should an algorithm be flexible in the sense of

having a large AUC, but it should also be possible to accurately estimate the error

rates for various parameter settings so that the free parameters of the algorithm can

be set appropriately.

1.7 Outline of Thesis

In Chapter 2 we briefly review SVMs, introduce the cost-sensitive extensions of

the C-SVM and ν-SVM – the 2C-SVM and 2ν-SVM, and list some of their properties,

including a detailed description of the relationship between these two formulations

which generalizes results of [4,7]. In Chapters 3, 4, and 5 we describe how the 2ν-SVM
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Figure 1.3: Examples of ROC curves. (a) A pair ROC curves where algorithm A dominates
algorithm B. (b) A more typical example of a pair of ROC curves where neither algorithm A
nor algorithm B dominates. (c) A practical example where we want to operate at a specific
point on the ROC curve – even though algorithm A dominates algorithm B, we might prefer
algorithm B if it offers better control over where on the ROC curve we actually operate.
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can be used for minimax classification, NP classification, and MV-set estimation, pro-

viding detailed experimental results for each algorithm on a collection of benchmark

data sets. Finally, we conclude in Chapter 6 with discussion and directions for future

research.
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Chapter 2

Support Vector Machines

2.1 Review of SVMs

SVMs are among the most effective methods for classification. Conceptually, we

construct a support vector classifier in a two step process. In the first step, we

transform the xi via a mapping Φ : Rd → H where H is a high (possibly infinite)

dimensional Hilbert space. Our intuition is that we should be able to more easily

separate the two classes inH than in Rd. For algorithmic reasons, Φ must be chosen so

that the kernel operator k(x,x′) = 〈Φ(x), Φ(x′)〉H is positive definite. This criterion

allows us to compute inner products in H without explicitly evaluating Φ.

In the second step, we determine a hyperplane in the induced feature space accord-

ing to the max-margin principle. In the case where we can separate the two classes

by a hyperplane, the SVM chooses the hyperplane that maximizes the margin – the

distance between the decision boundary and the closest point to the boundary. When

we cannot separate the classes by a hyperplane, we relax the constraints through the

introduction of slack variables ξi. If ξi > 0, this means that the corresponding xi lies

inside the margin and is called a margin error. If w ∈ H and b ∈ R are the normal
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vector and affine shift defining the max-margin hyperplane, then the support vector

classifier is given by fw,b(x) = sgn(〈w, Φ(x)〉H + b). The offset parameter b is often

called the bias.

There are two different formulations of the SVM. The original SVM [9] – the

C-SVM – can be formulated as the following quadratic program:

(PC) min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(k(w,xi) + b) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

where C ≥ 0 is a parameter that controls overfitting.

For computational reasons, it is often easier to solve (PC) by solving its dual:

(DC) min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ C for i = 1, . . . , n
n∑

i=1

αiyi = 0.

We derive this formulation by forming the Lagrangian (α is a Lagrange multiplier).

The primal and the dual are related through w =
∑n

i=1 αiyiΦ(xi). We will often have

that αi = 0 for most xi. We call the xi for which αi 6= 0 the support vectors.

An alternative (but equivalent) formulation of the C-SVM is the ν-SVM [23],
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which replaces C with a different parameter ν ∈ [0, 1] that serves as an upper bound

on the fraction of margin errors and a lower bound on the fraction of support vectors.

The ν-SVM has the primal formulation

(Pν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

n

n∑
i=1

ξi

subject to yi(k(w,xi) + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

and dual formulation

(Dν) min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ 1

n
for i = 1, . . . , n

n∑
i=1

αiyi = 0,
n∑

i=1

αi ≥ ν.

2.2 Cost-Sensitive SVMs

The above formulations implicitly penalize errors in both classes equally. However,

as described in the introduction, in many applications different are costs associated

with the two different kinds of errors. To address this issue, cost-sensitive extensions

of both the C-SVM and the ν-SVM have been proposed – the 2C-SVM and the

2ν-SVM.
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First we will consider the 2C-SVM proposed in [18]. Let I+ = {i : yi = +1} and

I− = {i : yi = −1}. The 2C-SVM has primal

(P2C) min
w,b,ξ

1

2
‖w‖2 + Cγ

∑
i∈I+

ξi + C(1− γ)
∑
i∈I−

ξi

subject to yi(k(w,xi) + b) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

and dual

(D2C) min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ Cγ for i ∈ I+

0 ≤ αi ≤ C(1− γ) for i ∈ I−
n∑

i=1

αiyi = 0

where C > 0 is again a parameter that controls overfitting and γ ∈ [0, 1] is a parameter

for trading off the two types of errors. Similarly, [6] proposed the 2ν-SVM as a cost-

sensitive extension of the ν-SVM. The 2ν-SVM has primal

(P2ν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

γ

n

∑
i∈I+

ξi +
1− γ

n

∑
i∈I−

ξi

subject to yi(k(w,xi) + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0
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and dual

(D2ν) min
α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ γ

n
for i ∈ I+

0 ≤ αi ≤ 1− γ

n
for i ∈ I−

n∑
i=1

αiyi = 0,
n∑

i=1

αi ≥ ν

where ν ∈ [0, 1] again controls overfitting and γ ∈ [0, 1] allows us to trade off between

the two types of errors.

2.3 Properties of the 2ν-SVM

Before illustrating the relationship between the 2C-SVM and the 2ν-SVM, we

establish some of the basic properties of the 2ν-SVM.

Proposition 1. Fix γ ∈ [0, 1] and let n+ = |I+|, n− = |I−|. Then (D2ν) is feasible if

and only if ν ≤ νmax ≤ 1, where

νmax =
2 min(γn+, (1− γ)n−)

n
.

Proof. First, assume that ν ≤ νmax. Then we can construct an α that satisfies the
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constraints of (D2ν). Specifically, let

αi =
νmax

2n+

=
min(γ, (1− γ)n−/n+)

n
≤ γ

n
for i ∈ I+

and

αi =
νmax

2n−
=

min(γn+/n−, 1− γ)

n
≤ 1− γ

n
for i ∈ I−.

Then
∑

i∈I+
αi +

∑
i∈I+

αi = νmax ≥ ν and
∑n

i=1 αiyi = 0. Thus we have a feasible

solution, and so (D2ν) is feasible.

Now assume that (D2ν) is feasible. Then there exists an α such that
∑n

i=1 αi ≥ ν

and
∑

i∈I+
αi =

∑
i∈I− αi. Combining this we obtain ν ≤ 2

∑
i∈I+

αi. Since we also

have 0 ≤ αi ≤ γ/n for i ∈ I+, we see that ν ≤ 2
∑

i∈I+
αi ≤ 2γn+/n, and therefore,

ν ≤ 2γn+/n. Similarly, ν ≤ 2(1− γ)n−/n. Thus ν ≤ νmax.

Finally, we can see that

νmax =
2 min(γn+, (1− γ)n−)

n
≤ 2 min(n+, n−)

n
≤ 1,

as desired.

Proposition 2. Fix γ ∈ [0, 1] and ν ∈ [0, νmax]. There is at least one optimal solution

of (D2ν) that satisfies
∑n

i=1 αi = ν. In addition, if the optimal objective value of (D2ν)

is not zero, all optimal solutions of (D2ν) satisfy
∑n

i=1 αi = ν.

Proof. This proposition was proved in [4] for (Dν). The proof relies only on the form
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of the objective function of (Dν), which is identical to that of (D2ν). Thus, we omit

it for the sake of brevity and refer the reader to [4].

We will later make use of the fact that the 2ν-SVM as proposed in [6] is parame-

terized in a different manner than (D2ν). Specifically, instead of parameters ν and γ,

we can formulate (D2ν) using ν+ and ν−, where

ν =
2ν+ν−n+n−

(ν+n+ + ν−n−)n
, γ =

ν−n−
ν+n+ + ν−n−

=
νn

2ν+n+

.

or equivalently

ν+ =
νn

2γn+

, ν− =
νn

2(1− γ)n−
.

This parametrization has the benefit that ν+ and ν− have a more intuitive meaning

illustrated by the following result.

Proposition 3. Suppose that the optimal objective value of (D2ν) is not zero. Then

for the optimal solution of (D2ν):

1. ν+ is an upper bound on the fraction of margin errors from class +1.

2. ν− is an upper bound on the fraction of margin errors from class −1.

3. ν+ is a lower bound on the fraction of support vectors from class +1.

4. ν− is a lower bound on the fraction of support vectors from class −1.

Proof. See [6] for the proof.
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Proposition 4. (D2ν) is feasible if and only if ν+ ≤ 1 and ν− ≤ 1.

Proof. From Proposition 1 we have that (D2ν) is feasible if and only if

ν ≤ 2 min(γn+, (1− γ)n−)

n
.

Thus, (D2ν) is feasible if and only if

2ν+ν−n+n−
(ν+n+ + ν−n−)n

≤
2 min

(
ν−n+n−

ν+n++ν−n−
, ν+n+n−

ν+n++ν−n−

)

n
,

which is equivalent to ν+ν− ≤ min(ν−, ν+), or ν+ ≤ 1 and ν− ≤ 1.

2.4 Relationship Between the 2ν-SVM and 2C-SVM

The following theorems illustrate the relationship between (D2C) and (D2ν). The

first shows how solutions of (D2C) are related to solutions of (D2ν), and the second

shows how solutions of (D2ν) are related to solutions of (D2C). The third theorem, our

main result, shows that increasing (decreasing) ν is similar to decreasing (increasing)

C. The proofs of these theorems were previously given in [10] and can be found in

the Appendix.

Theorem 1. Fix γ ∈ [0, 1]. For any C > 0, let αC be any optimal solution of (D2C)

and set ν =
∑n

i=1 αC
i /(Cn). Then any α is an optimal solution of (D2C) if and only

if α/(Cn) is an optimal solution of (D2ν).
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Theorem 2. Fix γ ∈ [0, 1]. For any ν ∈ (0, νmax], assume (D2ν) has a nonzero

optimal objective value, in which case ρ > 0, and set C = 1/(ρn). Then any α is an

optimal solution of (D2C) if and only if α/(Cn) is an optimal solution of (D2ν).

Theorem 3. Fix γ ∈ [0, 1] and let αC be any optimal solution of (D2C). Define

ν∗ = lim
C→∞

∑n
i=1 αC

i

Cn

and

ν∗ = lim
C→0

∑n
i=1 αC

i

Cn
.

Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1. For any ν > ν∗, (D2ν) is infeasible. For any

ν ∈ (ν∗, ν∗] the optimal objective value of (D2ν) is strictly positive, and there exists

at least one C > 0 such that any α is an optimal solution of (D2C) if and only if

α/(Cn) is an optimal solution of (D2ν). For any ν ∈ [0, ν∗], (D2ν) is feasible with an

optimal objective value of zero(and a trivial solution).

Remark 1. Consider the case where the data can be perfectly separated by a hyper-

plane. In this case, as C → ∞ margin errors are penalized more heavily, and thus

for some sufficiently large C, the solution of (D2C) will correspond to the separating

hyperplane. Thus there exists some C∗ such that αC∗ (corresponding to the separating

hyperplane) is an optimal solution of (D2C) for all C ≥ C∗. In this case, as C →∞,

∑n
i=1 αC

i /Cn → 0, and thus ν∗ = 0.

Using the definitions of ν+ and ν− in Section 2.3, it is easy to see that Theorem
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3 implies that if γ is fixed and we let C → ∞, (D2C) is equivalent to (D2ν) (in the

sense described above) if we let

ν+ → ν∗n
2γn+

≥ 0, ν− → ν∗n
2(1− γ)n−

≥ 0.

Similarly, if γ is fixed and we let C → 0, (D2C) is equivalent to (D2ν) if we let

ν+ → νmaxn

2γn+

= min

(
1,

(1− γ)n−
γn+

)
, ν− → νmaxn

2(1− γ)n−
= min

(
1,

γn+

(1− γ)n−

)
.

27



Chapter 3

Minimax Learning

We now return to the problem of minimax classification. We consider several

strategies for estimating minimax classifiers using SVMs. For example, one ap-

proach is to train a C-SVM or ν-SVM and then shift b (the bias) to minimize

max(PF (f), PM(f)). A more powerful approach is to use the 2C-SVM or 2ν-SVM to

attempt to minimize max(PF (f), PM(f)) by adjusting γ (and also possibly b) appro-

priately. In Chapter 2 we saw that (P2C) and (P2ν) are closely related and equivalent

in the sense that they explore the same set of possible solutions. Therefore, we lose

nothing in restricting our attention to the 2ν-SVM. In fact, in light of Theorem 3, we

can now see that there are some good reasons to prefer the 2ν-SVM to the 2C-SVM.

In particular, as noted in the previous section, for any fixed value of γ, if the data is

separable – which is always the case if we use a radial basis function as our kernel [4]

– then there exists an unknown value C∗ such that for all C ≥ C∗ we will obtain the

same solution. Therefore, if we want to implement any kind of grid search procedure

for parameter selection with the 2C-SVM, we are forced to make some rather arbitrary

choices regarding the maximal (and minimal) value of C to use in our grid search. If
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we set the maximum value of C too high we will repeatedly train SVMs for values of

C that all result in the same classifier, and hence waste a great deal of training time,

while if we set it too low we will not adequately explore the parameter space. This

issue, combined with the numerical problems faced by most implementations when C

becomes large (inspiring ad-hoc restrictions such as “never pick C > 1000”), have led

us to believe that the 2ν-SVM is a more appropriate formulation when implementing

the kinds of procedures we now describe.

In what follows PF (f) and PM(f) denote the false alarm and miss rates of a

classifier f as in equations (1.1) and (1.2), and P̂F (f) and P̂M(f) denote empirical

estimates of these quantities.

3.1 2ν-SVM Approach to Minimax Classification

As described in Section 2.3, the 2ν-SVM as proposed in [6] is parameterized in

a different manner than (P2ν). Our parametrization has the benefit that the dual

formulation of (P2ν) is feasible if and only if ν+ ≤ 1 and ν− ≤ 1, with a trivial solution

if ν+ ≤ 0 or ν− ≤ 0 (from Theorem 3). Therefore, to search over the parameters of the

2ν-SVM it suffices to conduct a search over a uniform grid of (ν+, ν−) in [0, 1]2. Hence,

the full algorithm for minimax classification with the 2ν-SVM is to search over ν+,

ν−, and any kernel parameters, obtain estimates of PF (f) and PM(f) using an error

estimation technique such as cross-validation, and select the parameter combination

minimizing max{P̂F (f), P̂M(f)}.

29



3.1.1 Smoothing the Error Estimates

We have observed across a wide range of datasets that P̂F (f) and P̂M(f) tend

to vary smoothly when plotted as functions of (ν+, ν−). However, these estimates

also appear somewhat “noisy”. Thus, a heuristic offering potential improvement for

the full grid search over (ν+, ν−) is to smooth the estimates with a low-pass filter

both P̂F (f) and P̂M(f) after estimating the error at each point on the grid. In

our experiments we consider two smoothing strategies: we can either apply a two-

dimensional smoothing filter (we use a simple Gaussian window) to the error estimates

for (ν+, ν−) ∈ [0, 1]2 separately for each value of the kernel parameter, or we can apply

a three-dimensional smoothing filter to the error estimates, smoothing across different

kernel parameter values. Both strategies effectively reduce the variance of the error

estimates. This approach is especially effective for high variance estimates like cross-

validation. Without smoothing, some grid points will look much better than they

actually are, due to chance variation. This technique illustrates another advantage

of the (ν+, ν−) parametrization since the ability to discretize the parameter space of

the 2ν-SVM with a uniform grid plays a key role in justifying this heuristic.

3.1.2 Coordinate Descent: Speeding Up the 2ν-SVM

The additional parameter in the 2ν-SVM renders a full grid search somewhat

time consuming, especially for large data sets. Fortunately, a simple speed-up is

possible. Again inspired by the smoothness of P̂F (f) and P̂M(f) as functions of
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(ν+, ν−), instead of conducting a full grid search over (ν+, ν−) we propose a coordinate

descent search. Several variants are possible, but the ones we employ run as follows:

For a fixed value of the kernel parameter, find the best parameters on grids placed

along the lines ν+ = 1/2 and ν− = 1/2. From then on, conduct a line search in the

direction orthogonal to the previous line search, at each step selecting the parameters

minimizing max{P̂F (f), P̂M(f)}, repeating this procedure for each kernel parameter

value. Just as before, a simple three-dimensional extension of this algorithm is also

considered, along with various approaches to smoothing the data. Note that this

strategy would again be more difficult to justify with the 2C-SVM because the choice

of endpoints and grid spacing would ultimately be arbitrary and data-dependent.

3.2 Alternative Approaches to Minimax Classification

3.2.1 Bias-Shifting

A potential advantage of the bias-shifting strategy is the ability to separate the

training into two stages. First, we search over the parameters of the SVM (ν and any

kernel parameters). Using an error estimation method such as cross-validation (CV),

we then select the parameters that minimize max{P̂F (f), P̂M(f)} or the misclassifi-

cation rate. Second, once ν has been selected we shift the bias of the corresponding

classifier and, again using some form of error estimation, select the bias that further

minimizes max{P̂F (f), P̂M(f)}. In our experiments, we use the resubstitution esti-

mate to select the bias. Resubstitution is generally a poor estimate when the set of
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classifiers is complex; however, once we fix a normal vector w, the set of possible

shifted hyperplanes is a class with low complexity, and so resubstitution is in fact a

reasonable error estimate. Note that we can apply the same technique to an SVM

trained using the 2ν-SVM approach described above in the hope that it will improve

the performance of that method as well.

3.2.2 Balanced ν-SVM

A common motivation for minimax classification is that some datasets are unbal-

anced in the sense that they have many more samples from one class than from the

other. In light of Proposition 3, another possible algorithm is to apply the strategy

described above for the ν-SVM, but instead to use a 2ν-SVM with ν+ = ν−. We

refer to this method as the balanced ν-SVM”. Since ν+ and ν− are upper bounds on

the fractions of margin errors from their respective classes, we might expect that this

method will be superior to the traditional ν-SVM. Note that this method has the

same computational complexity as the traditional ν-SVM.

3.2.3 Minimax Probability Machine

The minimax probability machine (MPM) is a kernel-based alternative to SVMs

that is specifically designed for minimax classification [15]. The general idea is to use

the training data to estimate the mean and covariance matrices for each of the two

classes, and then select the (hyperplane) classifier that minimizes max{P̂F (f), P̂M(f)}

for the worst-case over all possible choices of class-conditional densities whose (class-
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conditional) means and covariance matrices match those estimated from the training

data. Since the means and covariance matrices estimated from the training data will

be subject to some error, the user must set up to four parameters that reflect the

uncertainty in these estimates. The MPM can be kernelized in a similar manner to

the SVM, and the two algorithms have similar computational complexity, although

the MPM has a greater number of free parameters to tune.

3.3 Experiments

We ran our algorithms on a collection of benchmark datasets that are available

online with documentation.1 The datasets comprise a mixture of synthetic datasets

and datasets based on real data collected from various repositories on the web. The

datasets are summarized in Table 3.1. For each of the first 9 data sets, we have

100 permutations of the training and test data, and for the last two (“image” and

“splice”) we have 20 permutations.

In all of our experiments we used a radial basis function (Gaussian) kernel and

searched for the bandwidth parameter σ over a logarithmically spaced grid of 50

points from 10−4 to 104. For the ν-SVM method we searched over a uniform grid of

50 points of the parameter ν, and for the balanced ν-SVM we searched over a uniform

grid of 50 points of the parameter ν+ = ν−. For the 2ν-SVM methods we considered

a 50 × 50 regular grid of (ν+, ν−) ∈ [0, 1]2. For each parameter combination, we

1http://ida.first.fhg.de/projects/bench/
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Table 3.1: Description of benchmark datasets used in our experiments: d denotes the
dimension of the feature vectors, n (Training/Testing) the number of feature vectors in the
training and test sets, and n̄+ (n̄−) the average number of feature vectors in the training
set from the positive (negative) class. We also list whether the features are real-valued,
discrete-valued, or comprise a combination of real and discrete-valued features.

Dataset d n (Training) n̄+ n̄− n (Testing) Features

banana 2 400 182 218 4900 Real
breast-cancer 9 200 59 141 77 Discrete
diabetes 8 468 164 304 300 Mixed
flare-solar 9 666 368 298 400 Discrete
heart 13 170 76 94 100 Mixed
ringnorm 20 400 199 201 7000 Real
thyroid 5 140 43 97 75 Real
twonorm 20 400 202 198 7000 Real
waveform 21 400 132 268 4600 Real
image 18 1300 746 554 1010 Mixed
splice 60 1000 483 517 2175 Discrete

estimated PF (f) and PM(f) using 5-fold cross-validation. In adjusting the bias for

any of these methods we selected the optimal bias according to the resubstitution

estimate. We applied a 3 × 3 Gaussian window to the error estimates to implement

2-dimensional smoothing, and we applied a 3 × 3 × 3 Gaussian window to the error

estimates to implement 3-dimensional smoothing. The standard deviation of the

Gaussian window was set to the length of one grid interval. Different window sizes

and widths were tried, but without much change in performance. For the coordinate

descent methods we used the same grid structure described above. In our experiments

with the ν-SVM we used the LIBSVM package [3]. For the 2ν-SVM we implemented

our own version that is available online at www.dsp.rice.edu/software.

For each permutation of each dataset we ran our algorithms on the training data
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and estimated the false alarm and miss rates using the test data. On any given

permutation, our performance metric is max{P̂F (f), P̂M(f)}, where P̂F (f) and P̂M(f)

denote the false positive and miss rates estimated using the test data. To generate

a more reliable performance estimate, we repeat this for each permutation and then

average the minimax scores over all permutations – a procedure known as Monte Carlo

cross-validation [28]. To evaluate performance on unbalanced datasets, we repeated

these experiments retaining only 10% of the negatively labeled training data.

We use two main statistical tests to compare the algorithms described above, as

advocated in [13]. In cases where we want to make a direct comparison between only

two algorithms, we use the Wilcoxon signed-ranks test, which ranks the differences in

performances of the two classifiers over the 11 datasets, and then compares the ranks

for the positive and negative differences to test if the observed differences between the

two algorithms is statistically significant. When reporting results from the Wilcoxon

signed-ranks test, we will give the p-value, or probability of obtaining the observed

differences by chance.

When we wish to compare more than two algorithms on multiple datasets, we use

a two-step procedure. First we use the Friedman test, which is a statistical test similar

to the Wilcoxon signed-ranks test in that it allows us to determine the probability

of obtaining the observed performances by chance. Next, once we have rejected the

null-hypothesis (that the differences have occurred by chance) we apply the Nemenyi

test which involves computing a ranking of the algorithms for each dataset, and then
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an average ranking for each algorithm. Along with these rankings, we provide the so-

called critical difference for a significance level of 0.05. (If the average ranking of two

algorithms differs by more than this value, the performance of the two algorithms is

significantly different with a p-value of 0.05.) See [13] for a more thorough discussion

of and motivation for these techniques.

3.4 Results

We begin by evaluating the performance of the 2ν-SVM. Perhaps somewhat sur-

prisingly, bias-shifting actually results in uniformly worse performance for every 2ν-

SVM-based method, with p-values below 0.05 in almost every case (see Table 3.2).

As we will see again in our discussion of the balanced ν-SVM and the ν-SVM, bias-

shifting only leads to improved performance when the SVM parameters have been

selected to minimize the error rate. When the SVM parameters are selected to mini-

mize max{P̂F (f), P̂M(f)}, bias-shifting has a negative impact on overall performance.

On the other hand, smoothing and coordinate descent are extremely effective. The

results of smoothing are shown in Table 3.3, and they clearly indicate that 2-D and 3-

D smoothing offer a statistically significant gain in performance, with 3-D smoothing

offering a slight edge. Similarly, the results in Table 3.4 show that 3-D smoothing

combined with either 2-D or 3-D coordinate descent offer gains in performance as well,

which is particularly helpful since these methods speed up the parameter selection

process considerably.
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Table 3.2: The effect of bias-shifting on the 2ν-SVM methods for minimax classification.
For every case, bias-shifting leads to worse performance compared to a 2ν-SVM without
bias-shifting (on both balanced and unbalanced data sets). The table lists the p-values
calculated using the Wilcoxon signed-ranks test indicating the significance of this difference
in performance are listed for each 2ν-SVM method.

Smoothing Coordinate Descent Balanced Unbalanced

None None .148 .042
2-D None .001 .001
3-D None .005 .001
None 2-D .107 .007
None 3-D .032 .007
2-D 2-D .001 .001
3-D 2-D .002 .001
3-D 3-D .032 .001

Table 3.3: Comparison of smoothing methods for the 2ν-SVM for minimax classification.
The table lists the average ranking for each approach. (Friedman test yields p-values of .001
for both balanced and unbalanced experiments. The critical difference for the Nemenyi test
at 0.05 is 1.10.)

Smoothing Balanced Unbalanced

None 2.91 2.91
2-D 1.73 1.64
3-D 1.36 1.45

Table 3.4: Comparison of coordinate descent methods for the 2ν-SVM for minimax clas-
sification. The table lists the average ranking for each approach. (Friedman test yields
p-values of .002 for balanced and .001 for unbalanced experiments. The critical difference
for the Nemenyi test at 0.05 is 1.92.)

Smoothing Coordinate Descent Balanced Unbalanced

None 2-D 4.18 4.18
None 3-D 3.91 4.00
2-D 2-D 2.73 2.82
3-D 2-D 2.00 2.00
3-D 3-D 2.18 2.00
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Table 3.5: Comparison of different methods using the ν-SVM for minimax classification.
The table lists the average ranking for each approach. (Friedman test yields p-values of .200
for balanced and .002 for unbalanced experiments. The critical difference for the Nemenyi
test at 0.05 is 1.50.)

Method Smoothing Balanced Unbalanced

MM-NoBS No 3.00 3.64
MM-NoBS Yes 2.18 2.73

PE-BS No 2.82 1.73
PE-BS Yes 2.00 1.91

Before we directly compare the smoothing and coordinate descent methods, let

us briefly evaluate the balanced ν-SVM and the traditional ν-SVM. We consider two

main strategies: (1) adjust ν (or ν+ = ν− for the balanced ν-SVM) to minimize

max{P̂F (f), P̂M(f)} (with 2-D smoothing between ν and the kernel parameter op-

tional), and do not adjust the bias, or (2) adjust ν (or ν+ = ν−) to minimize the

misclassification rate (with 2-D smoothing between ν and the kernel parameter again

optional), and adjust the bias to minimize max{P̂F (f), P̂M(f)}. In Tables 3.5 and 3.6

we denote strategy (1) by MM-NoBS and strategy (2) by PE-BS. For the traditional

ν-SVM, we find that strategy (2) appears most effective, as can be seen in Table 3.5.

Alternatively, for the balanced ν-SVM the results indicate that the best method is to

use smoothing and follow strategy (1), as can be seen in Table 3.6. This result seems

to indicate that the parametrization of the balanced ν-SVM does indeed lend itself

more naturally to minimax classification than the traditional ν-SVM, which needs to

adjust the bias after training the SVM to get the desired performance.

We are finally in a position to compare the 2ν-SVM strategies to the balanced
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Table 3.6: Comparison of different methods using the balanced ν-SVM for minimax clas-
sification. The table lists the average ranking for each approach. (Friedman test yields
p-values of .183 for balanced and .0001 for unbalanced experiments. The critical difference
for the Nemenyi test at 0.05 is 1.50.)

Method Smoothing Balanced Unbalanced

MM-NoBS No 2.91 2.09
MM-NoBS Yes 1.82 1.27

PE-BS No 2.82 3.09
PE-BS Yes 2.45 3.55

ν-SVM and traditional ν-SVM. In Tables 3.7 and 3.8 we give the minimax error

rates for the 3-D smoothing approach (labeled 3D-GS), the 2-D and 3-D coordi-

nate descent methods (labeled 2D-CD and 3D-CD – both use 3-D smoothing), the

balanced ν-SVM without bias-shifting (labeled Bal ν-SVM), and the traditional ν-

SVM with bias-shifting (labeled ν-SVM). Table 3.7 shows the performance of each

algorithm on each dataset averaged over the permutations, and Table 3.8 shows the

same for the unbalanced datasets. Table 3.9 gives the results of the Nemenyi test

for these algorithms. In the balanced experiments, the 2ν-SVM methods appear to

exhibit stronger performance, but this is not statistically significant. However, for the

unbalanced case, there is a clear and significant difference, with the 2ν-SVM methods

being clearly superior. The 3D-GS method appears to be the best performing overall,

but the coordinate descent methods exhibit very similar performance.

Finally, we can compare the 2ν-SVM with the MPM. We compare the 2ν-SVM and

the MPM with a linear kernel, and we set the parameters for the MPM to be the ideal

parameters based on the test set, which should give the MPM an unfair advantage.
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Table 3.7: Minimax rates on the balanced datasets for the best 2ν-SVM methods, the bal-
anced ν-SVM (without bias-shifting), and the ν-SVM (with bias-shifting). Scores reported
are max{P̂F (f), P̂M (f)}, averaged over all 100 (or 20) permutations.

Dataset 3D-GS 2D-CD 3D-CD Bal ν-SVM ν-SVM

banana .129 .129 .129 .133 .132
breast-cancer .414 .419 .431 .490 .425

diabetes .302 .301 .303 .304 .289
flare-solar .355 .352 .433 .415 .365

heart .226 .219 .224 .231 .221
ringnorm .024 .023 .021 .022 .027
thyroid .075 .078 .070 .076 .081

twonorm .032 .031 .030 .029 .034
waveform .119 .117 .116 .123 .135

image .043 .050 .065 .039 .040
splice .114 .118 .118 .113 .157

Table 3.8: Minimax rates on the unbalanced datasets for the best 2ν-SVM methods,
the balanced ν-SVM (without bias-shifting), and the ν-SVM (with bias-shifting). Scores
reported are max{P̂F (f), P̂M (f)}, averaged over all 100 (or 20) permutations.

Dataset 3D-GS 2D-CD 3D-CD Bal ν-SVM ν-SVM

banana .193 .194 .189 .226 .218
breast-cancer .451 .460 .477 .564 .737

diabetes .340 .340 .338 .455 .449
flare-solar .410 .412 .425 .595 .548

heart .271 .286 .275 .413 .490
ringnorm .048 .049 .040 .055 .088
thyroid .133 .139 .126 .126 .135

twonorm .060 .060 .058 .079 .099
waveform .168 .171 .168 .210 .181

image .134 .133 .157 .151 .097
splice .195 .196 .200 .379 .335
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Table 3.9: Comparison of best 2ν-SVM methods for minimax classification, the balanced
ν-SVM (without bias-shifting), and the ν-SVM (with bias-shifting). The table lists the
average ranking for each approach. (Friedman test yields p-values of .502 for balanced and
.0003 for unbalanced experiments. The critical difference for the Nemenyi test at 0.05 is
1.92.)

Method Balanced Unbalanced

3D-GS 2.73 2.00
2D-CD 2.64 2.64
3D-CD 2.73 2.00
ν-SVM 3.64 4.09

Bal ν-SVM 3.27 4.27

Recall that the parameters for the MPM represent the uncertainty in our knowledge of

the class-dependent means and covariance matrices. We can calculate this uncertainty

exactly by calculating the differences between the means and covariances based on

the training set andthose based on the test set, which allows us to realize the best

performance possible with the MPM. To make a fair comparison, we only set two

free parameters – we assume that the uncertainty in the means and covariances is

the same for both classes, and thus the MPM and 2ν-SVM would require roughly

the same computational complexity to set the parameters in a practical setting. We

then compare this to the performance of the 2ν-SVM where the parameters for the

2ν-SVM are chosen via cross-validation. The results are given in Table 3.10. In the

unbalanced case we do not see a significant difference, with each algorithm doing

better on roughly half the datasets, although in this case we do see that when the

2ν-SVM outperforms the MPM it tends to do so by a large amount compared to cases

where the MPM outperforms the 2ν-SVM. However, in the balanced case we get a
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Table 3.10: Minimax rates for the 2ν-SVM with linear kernel (where ν+ and ν− are
selected through cross validation, with smoothing of the error estimates) and the linear
MPM where the parameters are chosen to be optimal for the test data set. Scores reported
are max{P̂F (f), P̂M (f)}, averaged over all 100 (or 20) permutations.

Dataset
Balanced Unbalanced

SVM MPM SVM MPM

banana .558 .482 .619 .517
breast-cancer .396 .401 .453 .421

diabetes .291 .311 .332 .319
flare-solar .350 .360 .392 .399

heart .218 .205 .285 .238
ringnorm .287 .308 .335 .302
thyroid .197 .387 .253 .392

twonorm .031 .027 .064 .038
waveform .141 .180 .175 .218

image .194 .341 .230 .362
splice .175 .184 .239 .296

clear difference in performance. Furthermore, in a more practical setting, in which the

parameters for the MPM are set imperfectly, the 2ν-SVM would likely out-perform

the MPM by an even greater margin.
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Chapter 4

Neyman-Pearson Learning

We now turn to the NP classification setting. NP classification has much in com-

mon with minimax classification, and we will consider slight modifications of many

of the same algorithms described above. However, there are important differences

in how we set the SVM parameters and in how we evaluate the performance of our

algorithms.

4.1 Approaches to Neyman-Pearson Classification

4.1.1 2ν-SVM Approach

Our approach to NP classification using the 2ν-SVM is for the most part identical

to our approach to minimax classification using the 2ν-SVM, with the main difference

being the way in which we select our free parameters. After conducting a grid search

over ν+, ν−, and any kernel parameters, we use estimates of PF (f) and PM(f) to

select the parameter combination minimizing PM(f) subject to the constraint that

PF (f) < α. Just as before, smoothing the error estimates will prove to be a useful

heuristic. Our coordinate descent procedure can also be used in this setting provided

43



that we make a minor modification. At the beginning of the coordinate descent search,

it is possible that we may not find any parameter settings that yield a classifier

satisfying the false alarm constraint. In this event, we simply pick the classifier

minimizing PF (f), and proceed with our search until we find a parameter setting

that does satisfy the false alarm constraint.

4.1.2 Bias-Shifting Approaches

As an alternative to the 2ν-SVM approach, we again consider the traditional ν-

SVM and the balanced ν-SVM, along with the strategy of bias-shifting. Based on the

results for minimax classification, we do not expect these methods to perform as well

as the 2ν-SVM methods, but they will serve as a meaningful reference to compare to,

and are representative of the techniques most frequently used in practice.

4.2 Measuring Performance

As described in the Introduction, we would like to have a scalar performance

measure, but find the AUC to be inadequate in our setting. An obvious option

is to estimate PF (f) and PM(f) and assign a “score” of P̂M(f) to the classifier if

P̂F (f) ≤ α, and ∞ otherwise. Unfortunately, there are a number of problems with

this approach.

First, our classifiers have been estimated from random training samples, and hence

the false alarm rate of a classifier is itself a random quantity. The performance of an
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algorithm on one dataset may not give a fair indication of its performance on others.

This contrasts with conventional classification, where the probability of error for an

unfavorable training sample will at least be somewhat close to the typical probability

of error for that distribution. In terms of expectation, the expected performance of

a learning rule will be infinite as long as there is some collection of training samples

(that occurs with nonzero probability) for which PF (f) > α. It seems preferable

for a performance measure to show more leniency to violations of the false alarm

constraint so that “rare” training samples do not mislead us about an algorithm’s

typical performance.

Second, it is not possible to estimate the performance from data precisely. Esti-

mates of PF (f) and PM(f) are based on random data and thus will have some chance

error. It is generally impossible to be certain whether a given classifier does or does

not satisfy the false alarm constraint. In fact, if we evaluate the performance of f

with P̂M(f) when P̂F (f) ≤ α and with ∞ otherwise, then the bias of this estimate is

infinite whenever 0 < PF (f) ≤ α.

Third, many practitioners would be content to have the false alarm rate slightly

exceed the constraint if the decrease in the miss rate is substantial. In other words,

it might be nice to explore a small region along the receiver operating characteristic

in the vicinity of α.

In summary, the indicator function-based performance measures just discussed are

sufficient for theoretical purposes, but their empirical counterparts are not. A good
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performance measure for NP classification should not reject outright a classifier that

appears to violate the false alarm constraint. Such a violation may be (1) the result

of a rare training sample on which an otherwise good learning rule performs poorly,

(2) the result of chance error in estimating the false alarm rate, and (3) acceptable

to a practitioner.

To alleviate these problems we could instead measure performance with cI(PF (f) >

α)+PM(f), where c > 1 and I(·) is an indicator. Yet the same three arguments used

above for the case c = ∞ still apply. For example, suppose we estimate this quantity

with a plug-in estimate based on an independent test sample. This estimate has a

very large bias when PF (f) is close to α, even for large test sample sizes. In fact, if

PF (f) = α, the bias does not tend to zero as the test sample size increases.

Another possibility, which does show some leniency to classifiers violating the

false alarm constraint, is to measure performance with |PF (f)−α|+ |PM(f)− βα| or

some other “distance” in the (PF (f), PM(f)) plane. Yet this kind of measure too has

drawbacks. It requires knowledge of βα which is unknown, and hence the distance

cannot be estimated. In addition, it penalizes classifiers for having PF (f) < α or

PM(f) < βα, which seems unreasonable.

To remedy this situation, we consider the Neyman-Pearson score,

E(f) =
1

α
max {PF (f)− α, 0}+ PM(f). (4.1)

as a practical performance measure for evaluation and comparison of classifiers in NP
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classification. In [24] it is shown that the global minimizer of E is indeed f ∗α, con-

sistent with the task of NP classification. Furthermore, the NP score has additional

properties, desirable from a statistical point of view. For example, it can be reliably

estimated from data. It also has the appealing property that it tolerates small viola-

tions of the false alarm constraint. That is, it will prefer a classifier with PF (f) > α

to one with PF (f) ≤ α if the payoff in PM(f) is large enough. At the same time, as α

draws closer to 0, a stiffer penalty is exacted on classifiers that violate the constraint.

This makes sense because exceeding α by 0.01, for example, is much more significant

when α = 0.01 than when α = 0.1. Said another way, the NP score in (4.1) penalizes

the relative error (PF (f)− α)/α.

4.3 Experiments and Results

We again begin by evaluating the performance of the 2ν-SVM. Our experimental

procedure was identical to that described in Section 3.3, with the only difference

being the criterion used to select the various parameters. As was the case in minimax

classification, bias-shifting results in uniformly worse performance for every 2ν-SVM-

based method, with p-values below 0.05 in almost every case (see Table 4.1). This

result is consistent with our previous observation that bias-shifting is only beneficial

when the false alarm (or miss) rate of the base classifier is far from the desired false

alarm (or miss) rate.

The results for smoothing and coordinate descent also mirror those for minimax
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Table 4.1: The effect of bias-shifting on the 2ν-SVM methods for NP classification. For
every case, bias-shifting leads to worse performance compared to a 2ν-SVM without bias-
shifting (on both balanced and unbalanced data sets). The table lists the p-values calculated
using the Wilcoxon signed-ranks test indicating the significance of this difference in perfor-
mance are listed for each 2ν-SVM method.

Smoothing CD
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

None None .002 .010 .032 .175 .024 .024 .067 .067
2-D None .001 .001 .001 .001 .001 .001 .001 .001
3-D None .001 .001 .001 .001 .001 .001 .001 .001
None 2-D .001 .003 .001 .019 .002 .002 .003 .007
None 3-D .001 .001 .001 .003 .003 .002 .001 .001
2-D 2-D .001 .001 .001 .001 .001 .001 .001 .001
3-D 2-D .001 .001 .001 .001 .001 .001 .001 .001
3-D 3-D .001 .001 .001 .001 .001 .001 .001 .001

Table 4.2: Comparison of smoothing methods for the 2ν-SVM for NP classification. The
table lists the average ranking for each approach. (Friedman test yields p-values of less than
.01 for all cases. The critical difference for the Nemenyi test at 0.05 is 1.10.)

Smoothing
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

None 3.00 3.00 2.73 3.00 2.73 2.82 2.64 2.73
2-D 1.91 1.91 2.09 1.82 1.82 1.82 2.00 1.91
3-D 1.09 1.09 1.18 1.18 1.45 1.36 1.36 1.36

classification. The results of smoothing are shown in Table 4.2, again indicating that

2-D and 3-D smoothing offer a statistically significant gain in performance, with 3-D

smoothing performing slightly better. Similarly, the results in Table 4.3 show that

3-D smoothing combined with either 2-D or 3-D coordinate descent offer gains in

performance as well.

Next we again briefly evaluate the balanced ν-SVM and the traditional ν-SVM.
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Table 4.3: Comparison of coordinate descent methods for the 2ν-SVM for NP classification.
The table lists the average ranking for each approach. (Friedman test yields p-values of less
than .05 for all cases. The critical difference for the Nemenyi test at 0.05 is 1.92.)

Smoothing CD
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

None 2-D 4.09 3.82 3.82 4.55 4.45 4.36 4.36 4.18
None 3-D 3.91 4.18 3.55 4.00 4.18 3.91 3.64 3.82
2-D 2-D 2.73 2.36 2.64 2.91 2.36 2.82 3.36 3.18
3-D 2-D 2.09 1.91 1.91 1.55 2.00 2.00 1.91 2.09
3-D 3-D 2.18 2.73 3.09 2.00 2.00 1.91 1.73 1.73

We now consider three main strategies: (1) adjust ν (or ν+ = ν− for the balanced

ν-SVM) to minimize P̂M(f) subject to P̂F (f) < α (with 2-D smoothing between ν

and the kernel parameter optional), and do not adjust the bias, (2) repeat (1) but

shift the bias to further minimize P̂M(f), or (3) adjust ν (or ν+ = ν−) to minimize the

misclassification rate (with 2-D smoothing between ν and the kernel parameter again

optional), and adjust the bias to minimize P̂M(f) subject to P̂F (f) < α. In Tables 4.4

and 4.5 we denote strategy (1) by NP-NoBS, (2) by NP-BS, and (3) by PE-BS. For the

traditional ν-SVM, we find that strategy (1) appears most effective on the balanced

datasets, and strategy (2) seems to be most effective on the unbalanced datasets, as

can be seen in Table 4.4. Alternatively, for the balanced ν-SVM strategy (1) seems

to be the best (or competitive with the best) method regardless of whether the data

is balanced or unbalanced, as can be seen in Table 4.5. Notice that in both cases,

strategy (3), which is the method most commonly used in practice, is clearly inferior.

For comparison with the 2ν-SVM, we will consider strategy (2) for the traditional
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Table 4.4: Comparison of different methods using the ν-SVM for NP classification. The
table lists the average ranking for each approach. (Friedman test yields p-values of less than
.05 for all cases. The critical difference for the Nemenyi test at 0.05 is 2.35.)

Method Smoothing
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

NP-NoBS No 2.68 2.00 2.09 2.36 5.64 4.73 3.82 2.59
NP-NoBs Yes 2.23 2.27 1.64 1.73 5.18 4.27 3.73 3.05
NP-BS No 4.86 4.45 4.27 4.36 2.00 2.27 2.36 2.77
NP-BS Yes 5.23 5.73 5.45 5.09 1.91 2.00 2.55 3.50
PE-BS No 3.09 3.55 3.91 4.00 2.64 3.27 3.55 4.00
PE-BS Yes 2.91 3.00 3.64 3.45 3.64 4.45 5.00 5.09

Table 4.5: Comparison of different methods using the balanced ν-SVM for NP classifica-
tion. The table lists the average ranking for each approach. (Friedman test yields p-values
of less than .1 for all cases. The critical difference for the Nemenyi test at 0.05 is 2.35.)

Method Smoothing
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

NP-NoBS No 3.00 2.27 2.18 2.45 3.36 3.09 2.95 2.41
NP-NoBs Yes 2.27 2.45 1.82 1.27 3.09 3.00 2.50 2.23
NP-BS No 4.55 4.64 5.09 4.73 2.18 2.55 2.86 3.23
NP-BS Yes 4.27 5.45 5.09 5.18 2.27 2.18 2.68 3.86
PE-BS No 3.36 3.36 3.64 3.91 4.73 4.73 4.36 4.18
PE-BS Yes 3.55 2.82 3.18 3.45 5.36 5.45 5.64 5.09

ν-SVM and strategy (1) for the balanced ν-SVM.

We are now in a position to compare the 2ν-SVM strategies to the balanced ν-

SVM and traditional ν-SVM. In Table 4.6 we give the results of the Nemenyi test for

the 3-D smoothing approach (labeled 3D-GS), the 2-D and 3-D coordinate descent

methods (labeled 2D-CD and 3D-CD – both use 3-D smoothing), the balanced ν-

SVM without bias-shifting (labeled Bal ν-SVM), and the traditional ν-SVM with

bias-shifting (labeled ν-SVM). In this case we see that the 2ν-SVM methods clearly
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Table 4.6: Comparison of 2ν-SVM methods for NP classification with the balanced ν-SVM
and the ν-SVM with bias-shifting. The table lists the average ranking for each approach.
(Friedman test yields p-values of less than .001 for all cases. The critical difference for the
Nemenyi test at 0.05 is 1.92.)

Method
Balanced (α) Unbalanced (α)

.01 .05 .1 .2 .01 .05 .1 .2

3D-GS 2.64 2.18 2.36 2.45 3.36 3.27 3.18 2.45
2D-CD 2.45 2.27 2.18 2.27 1.91 1.91 2.09 2.55
3D-CD 2.00 2.73 2.73 2.55 1.73 1.64 1.64 1.91
ν-SVM 5.00 5.00 4.91 4.91 3.45 3.73 4.18 4.55

Bal ν-SVM 2.91 2.82 2.82 2.82 4.55 4.45 3.91 3.55

outperform the traditional ν-SVM methods, and also outperform the balanced ν-

SVM, but by a smaller margin on the balanced datasets. Perhaps the most surprising

result is that the 3-D coordinate descent method is not only competitive with the full

grid search, but is even better than the grid search on the unbalanced datasets.
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Chapter 5

Learning Minimum-Volume Sets

We now examine how the techniques for NP classification described above can be

used for anomaly detection through the introduction of an artificially generated class

of points, allowing us to estimate MV-sets as described in the Introduction. While

the NP classification algorithms used in this setting are identical to those described

above, we must take care in how we generate the artificial data, especially in high

dimensions.

5.1 2ν-SVM Approach

The two-class method entails generating realizations from the reference measure

µ. In the case where µ is the Lebesgue measure and the features are real-valued, it

suffices to draw points uniformly from some hypercube containing the data. In some

cases we will have training data where some (or all) of the features assume a finite

number of discrete values. For example, one feature might be gender, in which case

the data points will assume only one of two possible values. In this case it makes

little sense to draw training points uniformly from a hypercube containing the data,
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thus we instead draw points uniformly from the discrete set of values the feature can

assume.

In both cases, drawing these points is a straightforward procedure. However,

as the number of points drawn grows, so does the computational complexity of the

training process. Thus, in practice, we must only draw a small number of points.

Unfortunately, with a limited number of simulated points, independent generation of

the uniform data may suffer because P may be concentrated in a very small volume

of space. Furthermore, in high dimensions, the average interpoint distance increases,

and more and more of the simulated points will be so far from the data as to be useless

in estimating the volume. This effect can be viewed as one aspect of the “curse of

dimensionality”.

5.1.1 Thinning

The thinning approach is to draw many more points than are ultimately desired,

and then adaptively remove points to get the desired number of points. Specifically,

say that we draw m points and ultimately want n points, where m À n. We then

compute the Euclidean distance between all possible pairs of points. We can iter-

atively remove points by considering the remaining points and selecting the pair of

points that are closest to each other. We throw away one of these points by removing

the one that is closest to any of the remaining points. When iteratively applied, this

results in a data set where the points are ensured to be separated by a relatively large

minimum distance [37].
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(a) (b)

(c)

Figure 5.1: Methods for generating uniform data. (a) n points sampled independently
from a uniform distribution. (b) 10 n points sampled from a uniform distribution thinned
to n points. (c) 10 n points sampled from a thickened manifold thinned to n points.

5.1.2 Manifold Sampling

The thinning approach described above helps to distribute the points evenly

throughout space. This approach is potentially problematic in high dimensions.

When dealing with high-dimensional data, it is common for the data to occupy a very

small fraction of the total volume of a hypercube containing the data. For example,

our data might lie on a low-dimensional manifold embedded in a high-dimensional
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space. In this case, a small number of points drawn uniformly on the hypercube may

be of little use in estimating the MV-set – it is extremely unlikely that any points will

lie within the MV-set, and hence it is essentially impossible to estimate the volume

of the set.

We propose a second approach that models the observed data as lying on a low-

dimensional manifold. First, compute the average distance between a point and its kth

nearest neighbor, where k is chosen by the user (in our experiments we take k = 10).

Then, generate a large number of points by randomly drawing points from the spheres

centered at the xi’s, whose radii are computed in the first step. We can think of the

union of these spheres as a thickened manifold within which the data lie. Again, we

can apply the thinning technique to get a reduced set of points that are separated by

a large minimum distance. These points also lie within a set that contains the data

but potentially has a much smaller volume than that of the bounding hypercube.

This technique and those described above are illustrated in Figure 5.1.

5.2 One-Class SVMs

The OC-SVM was proposed in [22] for the problems of estimating the support of a

high-dimensional distribution and novelty detection. The OC-SVM can be formulated

as

min
w,ξ,ρ

1

2
‖w‖2 − νρ +

1

n

n∑
i=1

ξi
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s.t. k(w,xi) ≥ ρ− ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n.

The resulting decision function

f(x) = sgn(k(w,x)− ρ)

will be positive on a set containing most xi. Thus, in this algorithm the MV-set is

chosen to be Ĝβ = {x : f(x) > 0}.

However, the user must set any kernel parameters and the parameter ν. It is not

immediately clear how to choose these parameters so that Ĝβ reasonably approximates

G∗
β. The challenge lies in the fact that while we can estimate P (G) from the data,

thus ensuring that P (G) > β, there will in general be many possible parameter

settings that result in sets G that satisfy this requirement, and we must select only

one. Specifically, we would like to choose the one with minimum volume. Thus we

must estimate the volume of the set induced by each parameter setting. We do so by

drawing a large number of points from µ and then calculating the fraction of these

points that lie in G for each parameter setting, as in [32].

The MPM can also be adapted to perform MV-set estimation. We defer the reader

to [16] for a thorough description of the OC-MPM. Given the superior performance

of the 2ν-SVM as compared to the traditional MPM, we do not compare with the

OC-MPM, but would expect it to exhibit inferior performance.
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5.3 Measuring Performance

Just as we reduced the problem of estimating MV-sets to that of NP classification,

we can use the same performance measures as before. Specifically, we can evaluate

an MV-set using

Eµ(G) =
1

1− β
max {β − P (G), 0}+ µ(G), (5.1)

where µ(G) is an estimate of the volume obtained by independently generating a

large test set according to µ, and P (G) is estimated from a separate test set that is

excluded during training.

However, in our experiments we employ benchmark data sets for binary classifi-

cation and perform MV-set estimation using only the negatively labeled class. Thus,

since we only use one class for training, we have a second performance measure:

E+(G) =
1

1− β
max {β − P (G), 0}+ Q+(G), (5.2)

where Q+({x : f(x) = −1}) is the probability of error on the class not used during

training. In some sense this metric is more appropriate because µ is effectively a

prior for the anomaly distribution, while Q+ is the actual anomaly distribution. We

will consider this measure as well since we would like our algorithm to perform well

regardless of the structure of the anomalous data. Both of these measures have the

same advantages as the measure defined in (4.1).
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5.4 Experiments and Results

In our experiments with the OC-SVM we again used the LIBSVM package [3],

and for the two-class methods, we used the 2ν-SVM described in Section 4. We used

the same data sets as before, but only the negatively labeled training vectors. In all of

our experiments we again used a radial basis function (Gaussian) kernel and searched

for the bandwidth parameter σ over a logarithmically spaced grid of 50 points from

10−4 to 104. For the 2ν-SVM method we again considered a 50 × 50 regular grid of

(ν+, ν−) ∈ [0, 1] × [0, 1]. For the OC-SVM we considered a 50 point logarithmically

spaced grid of ν from 10−4 to 1. For all methods we smoothed the error estimates

using a 3-D Gaussian window.

For each permutation of each data set we used the negatively labeled training and

test vectors as our normal data set. We then ran our algorithms on the training data

and estimated P , µ, and Q+ using the test vectors and a large set of vectors drawn

independently from a hypercube containing the data (or uniformly on the discrete set

of feature values as appropriate).

Tables 5.1—5.4 report the performance of the OC-SVM and the 2ν-SVM meth-

ods as measured by Eµ and E+. Unlike the results presented thus far, there is no

method that is superior on all datasets, although some general observations can be

made. First, the manifold sampling approach does tend to work better on high-

dimensional datasets as expected, and the thinning approach tends to work best on

low-dimensional datasets. However, both methods seem to perform very poorly on
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a small number of (different) datasets. This seems to be rooted in the fact that

these methods have more difficulty satisfying the constraint on the probability mass

compared to the OC-SVM. While the reasons for this are not clear, further investiga-

tion that considers various possible hybrids between our approach and the OC-SVM

should help shed some light on this issue.

On the other hand, we can compare the performance of the estimated MV-sets

to the performance of our NP classification algorithms. Specifically, we compare

the performance of the technique outlined above with the performance of a 2ν-SVM

which is trained with access to the anomalous data set. While the approach which

has access to the anomalies will obviously do better, we find that on several of the

datasets we do surprisingly well, and the two-class techniques do a much better job

at the achieving a low error rate on the unobserved class, as shown in Table 5.5. An

example is illustrated in Figure 5.2.
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Table 5.1: Performance of OC-SVM and 2ν-SVM methods for MV-set estimation. Scores
reported are Eµ and E+, averaged over all 100 (or 20) permutations, for β = 0.8.

Dataset
Eµ E+

OC Thin Man OC Thin Man

banana 0.69 1.10 0.31 0.17 0.89 0.16
breast-cancer 0.90 0.71 0.63 0.72 1.10 1.04

diabetes 0.99 1.20 0.58 0.65 1.44 0.93
flare-solar 1.25 0.09 0.13 0.95 0.62 0.85

heart 0.97 0.75 0.87 0.59 0.93 1.04
ringnorm 0.99 1.98 0.19 0.00 1.46 0.18
thyroid 1.09 0.50 1.51 0.17 0.48 1.53

twonorm 1.01 1.84 0.03 0.24 1.40 0.25
waveform 1.00 0.26 0.13 0.73 0.98 0.65

image 1.00 0.04 0.15 0.63 0.74 0.35
splice 0.03 0.64 1.00 0.89 0.77 1.00

Table 5.2: Performance of OC-SVM and 2ν-SVM methods for MV-set estimation. Scores
reported are Eµ and E+, averaged over all 100 (or 20) permutations, for β = 0.9.

Dataset
Eµ E+

OC Thin Man OC Thin Man

banana 1.01 1.38 0.43 0.98 1.10 0.30
breast-cancer 0.64 0.90 1.02 0.94 1.46 1.52

diabetes 0.96 1.34 0.17 0.83 1.81 0.84
flare-solar 0.88 0.17 0.32 0.91 0.73 1.06

heart 0.84 0.88 2.02 0.84 1.18 2.24
ringnorm 1.00 4.41 0.54 0.03 3.89 0.53
thyroid 0.88 0.84 2.84 0.36 0.74 2.87

twonorm 1.09 4.11 0.20 0.40 3.69 0.44
waveform 1.01 0.52 0.35 0.89 1.22 0.99

image 1.00 0.46 0.39 0.66 1.12 0.63
splice 0.01 2.10 1.00 0.96 2.12 1.00
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Table 5.3: Performance of OC-SVM and 2ν-SVM methods for MV-set estimation. Scores
reported are Eµ and E+, averaged over all 100 (or 20) permutations, for β = 0.95.

Dataset
Eµ E+

OC Thin Man OC Thin Man

banana 1.50 3.15 0.62 1.93 2.89 0.61
breast-cancer 0.60 0.98 1.29 1.25 1.63 1.88

diabetes 0.94 0.95 0.29 0.98 1.62 1.04
flare-solar 0.82 0.51 0.46 1.03 1.19 1.25

heart 1.25 1.30 2.60 1.50 1.58 2.95
ringnorm 1.20 9.19 1.45 0.26 8.66 1.43
thyroid 0.91 0.92 4.42 0.81 0.80 4.45

twonorm 1.37 8.67 1.37 0.76 8.24 1.61
waveform 0.92 0.92 1.30 0.93 1.62 1.96

image 1.00 1.45 0.67 0.70 2.09 1.13
splice 0.13 3.04 1.00 1.11 3.07 1.00

Table 5.4: Performance of OC-SVM and 2ν-SVM methods for MV-set estimation. Scores
reported are Eµ and E+, averaged over all 100 (or 20) permutations, for β = 0.99.

Dataset
Eµ E+

OC Thin Man OC Thin Man

banana 0.92 9.59 1.73 1.70 9.30 1.76
breast-cancer 4.22 1.57 1.29 4.88 1.89 1.57

diabetes 1.33 2.90 24.09 1.90 3.59 24.13
flare-solar 1.91 2.97 5.98 2.29 3.89 6.76

heart 7.85 2.21 18.43 8.10 2.36 18.62
ringnorm 5.89 42.16 3.78 4.94 41.58 3.74
thyroid 3.68 13.78 11.75 3.97 13.66 11.80

twonorm 7.01 44.20 7.35 6.40 43.79 7.65
waveform 2.43 4.17 2.93 2.64 4.86 3.80

image 1.37 5.57 1.48 1.84 6.17 2.15
splice 4.22 3.05 1.00 5.20 3.08 1.00
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Table 5.5: Performance of MV-set estimation techniques for NP classification. Scores
reported are PF (f) and PM (f), averaged over all 100 (or 20) permutations, for β = 0.9
(α = 0.1).

Dataset
NP-SVM OC-SVM Thin Man

PF (f) PM(f) PF (f) PM(f) PF (f) PM(f) PF (f) PM(f)

banana .10 .13 .13 .49 .20 .21 .09 .26
breast-cancer .11 .69 .08 .87 .12 .62 .15 .61

diabetes .10 .50 .08 .80 .11 .67 .10 .71
flare-solar .09 .56 .07 .89 .11 .57 .08 .83
waveform .09 .13 .08 .86 .13 .90 .13 .63

image .01 .00 .07 .66 .12 .63 .12 .33
splice .02 .03 .08 .96 .12 .88 .00 1
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(a)

(b)

Figure 5.2: MV-set estimates applied to NP classification. (a) Classifier (MV-set estimate)
without knowledge of “+” class, (b) Classifier with knowledge of “+” class.
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Chapter 6

Conclusion

While in some cases it may be reasonable to minimize the misclassification rate,

in many important settings this is impractical. To tackle this problem we have con-

sidered two frameworks: minimax and NP classification. We have demonstrated that

the 2ν-SVM is an efficient and effective algorithm for learning in both of these set-

tings, and clearly outperforms the bias-shifting strategies commonly used in practice.

An important observation from our study, which has placed a strong emphasis on

using an objective and appropriate performance measure, is that error estimation

for parameter estimation is crucial to a successful algorithm, with smoothing and

coordinate descent strategies leading to significant gains in performance.

These techniques extend to the anomaly detection setting through the idea of

MV-sets. We have observed that no method is clearly better than any other, but wild

differences in performance are possible over different data sets. This leads us to believe

that significant improvement should be possible through a better understanding of

the reasons why an algorithm fails when it does so.
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Appendix A

Proofs of Theorems

In [4] a detailed relationship between (Dν) and (DC) was established. We shall

follow a similar course using the same technique. First we rescale (D2C) by Cn in

order to compare it with (D2ν). This gives us:

(D′
2C) min

α

1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)− 1

Cn

n∑
i=1

αi

subject to 0 ≤ αi ≤ γ

n
for i ∈ I+

0 ≤ αi ≤ 1− γ

n
for i ∈ I−

n∑
i=1

αiyi = 0.

Rather than proving the theorems in Section 2.4 directly, we will take advantage of

the relationship between (D2C) and (D′
2C). We will establish equivalent theorems

(which we denote Theorems A, B, and C) relating (D2ν) and (D′
2C), which are then

trivially extended to the theorems stated in Section 2.4. We begin with the following

lemma:
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Lemma 1. Fix γ ∈ [0, 1], C > 0, and ν ∈ [0, 1]. Assume (D′
2C) and (D2ν) share one

optimal solution αC with
∑n

i=1 αC
i = ν. Then any α is an optimal solution of (D′

2C)

if and only if it is an optimal solution of (D2ν).

Proof. The analogue of this lemma for (D′
C) and (Dν) is proved in [4]. The proof

depends only on the form of the objective functions (specifically not taking the con-

straints into account) and on the analogue of Proposition 2. Since the objective

function of (Dν) is identical to that of (D2ν) and the objective function of (D′
C) is

also identical to that of (D′
2C), we refer the reader to [4] and omit the proof.

For the proofs of Theorems A and B, we will need to employ the Karush-Kuhn-

Tucker (KKT) conditions. Essentially, the KKT conditions are necessary and suffi-

cient conditions for α to be an optimal solution to our optimization problem. Specif-

ically, α is an optimal solution of (D′
2C) if and only if there exist b ∈ R and λ, ξ ∈ Rn

satisfying the KKT conditions:

n∑
j=1

αjyiyjk(xi,xj) − 1

Cn
+ byi = λi − ξi for i = 1, . . . , n (A.1)

λiαi = 0, λi ≥ 0, ξi ≥ 0 for i = 1, . . . , n (A.2)

ξi

(γ

n
− αi

)
= 0, 0 ≤ αi ≤ γ

n
for i ∈ I+ (A.3)

ξi

(
1− γ

n
− αi

)
= 0, 0 ≤ αi ≤ 1− γ

n
for i ∈ I− (A.4)

n∑
i=1

αiyi = 0. (A.5)

Similarly, α is an optimal solution of (D2ν) if and only if there exist b, ρ ∈ R and
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λ, ξ ∈ Rn satisfying the slightly different KKT conditions:

n∑
j=1

αjyiyjk(xi,xj) − ρ + byi = λi − ξi for i = 1, . . . , n (A.6)

λiαi = 0, λi ≥ 0, ξi ≥ 0 for i = 1, . . . , n (A.7)

ξi

(γ

n
− αi

)
= 0, 0 ≤ αi ≤ γ

n
for i ∈ I+ (A.8)

ξi

(
1− γ

n
− αi

)
= 0, 0 ≤ αi ≤ 1− γ

n
for i ∈ I− (A.9)

n∑
i=1

αiyi = 0,
n∑

i=1

αi ≥ ν, ρ

(
n∑

i=1

αi − ν

)
= 0. (A.10)

Notice that the two sets of conditions are mostly identical, except for the first and

last two of the conditions for (D2ν). Using this observation, we can prove equivalent

versions of Theorems 1 and 2.

Theorem A. Fix γ ∈ [0, 1]. For any C > 0, let αC be any optimal solution of (D′
2C)

and set ν =
∑n

i=1 αC
i . Then any α is an optimal solution of (D′

2C) if and only if it

is an optimal solution of (D2ν).

Proof. If αC is an optimal solution of (D′
2C) then it satisfies the KKT conditions for

(D′
2C). By setting ν =

∑n
i=1 αC

i and ρ = 1/(Cn), we see that αC also satisfies the

KKT conditions for (D2ν) and thus is an optimal solution of (D2ν). From Lemma 1

we therefore have that, for any α, α is an optimal solution of (D′
2C) if and only if it

is an optimal solution of (D2ν).

Theorem B. Fix γ ∈ [0, 1]. For any ν ∈ (0, νmax], assume (D2ν) has a nonzero
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optimal objective value, in which case ρ > 0, and set C = 1/(ρn). Then any α is an

optimal solution of (D′
2C) if and only if it is an optimal solution of (D2ν).

Proof. If αν is an optimal solution of (D2ν) then it satisfies the KKT conditions for

(D2ν). From condition (A.6) we have

n∑
i=1

(
n∑

j=1

αν
j yiyjk(xi,xj)− ρ + byi

)
αν

i =
n∑

i=1

(λi − ξi)α
ν
i

which, by applying the first conditions of (A.7) and (A.8), reduces to

n∑
i,j=1

αν
i α

ν
j yiyjk(xi,xj)− ρ

n∑
i=1

αν
i = −γ

n

n∑
i=1

ξi.

By assumption, (D2ν) has a nonzero optimal objective value. Thus from Proposition

2,
∑n

i=1 αν
i = ν, and

ρ =
1

ν

(
n∑

i,j=1

αν
i α

ν
j yiyjk(xi,xj) +

γ

n

n∑
i=1

ξi

)
> 0.

Thus we can choose C > 0 such that C = 1/(ρn) and αν is a KKT point of (D′
2C),

and from Lemma 1 we again have that for any α, α is an optimal solution of (D′
2C)

if and only if it is an optimal solution of (D2ν).

We will need the following lemmas to prove Theorem C.

Lemma 2. Fix γ ∈ [0, 1] and ν ∈ [0, 1]. If the optimal objective value of (D2ν)

is zero and there is a C > 0 such that the optimal solution of (D′
2C), αC satisfies
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∑n
i=1 αC

i = ν, then ν = νmax and any α is an optimal solution of (D2ν) if and only if

it is an optimal solution for all (D′
2C), C > 0.

Proof. By setting ρ = 1/Cn, αC is a KKT point of (D2ν). Therefore, if the optimal

objective value of (D2ν) is zero, then
∑n

i=1

∑n
j=1 αC

i αC
j yiyjk(xi,xj) = 0. Since k

is a positive definite kernel, we also have
∑n

j=1 αC
j yiyjk(xi,xj) = 0. In this case,

conditions (A.1)/(A.6) become

− 1

Cn
+ byi = λi − ξi for i = 1, . . . , n,

or

− 1

Cn
+ b = λi − ξi for i ∈ I+

− 1

Cn
− b = λi − ξi for i ∈ I−.

Assume first that b ≥ 0, then

λi − ξi < 0 for i ∈ I−.

This implies that ξi > 0 for all i ∈ I− since both λi and ξi are nonnegative. Therefore,

in order for the first conditions of (A.3)/(A.8), ξi((1 − γ)/n − αC
i ) = 0, to hold, we

need αC
i = (1−γ)/n for all i ∈ I−. From the first conditions of (A.5)/(A.10) we have

that
∑

i∈I+
αC

i =
∑

i∈I− αC
i . Therefore we need

∑
i∈I+

αC
i = (1 − γ)n−/n ≤ γn+/n.
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Hence, if (1− γ)n− > γn+ we have reached a contradiction, in which case it must be

that b < 0.

Therefore, assume without loss of generality that b ≥ 0 (since we can always

relabel the points so that this would be true), in which case (1 − γ)n− ≤ γn+ and

αC
i = (1− γ)/n for all i ∈ I−. There are three possibilities for i ∈ I+:

1. λi − ξi < 0

2. λi − ξi > 0

3. λi − ξi = 0.

In case 1, where λi − ξi < 0, it must be that ξi > 0 for all i ∈ I+. For the

first conditions of (A.3)/(A.8), ξi(γ/n − αC
i ) = 0, to hold, we need αC

i = γ/n for

all i ∈ I+. The requirement that
∑

i∈I+
αc

i =
∑

i∈I− αc
i (from the first conditions of

(A.5)/(A.10)) and the fact that αC
i = (1− γ)/n for all i ∈ I− imply that

∑n
i=1 αC

i =

2n+γ/n = 2n−(1 − γ)/n = νmax. Furthermore, since the optimal objective value of

(D2ν) is zero, the objective function for (D′
2C) in this case becomes

min
α

− 1

Cn

n∑
i=1

αi.

This is clearly minimized by αC (since
∑n

i=1 αC
i = νmax) for all C > 0, thus αC is an

optimal solution of (D′
2C) for all C > 0.

In case 2, where λi − ξi > 0, we have that λi > 0 for all i ∈ I−. For the first

conditions of (A.2)/(A.7), λiα
C
i = 0, to hold, we need αC

i = 0 for all i ∈ I+. However,
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the requirement that
∑

i∈I+
αC

i =
∑

i∈I− αC
i and the fact that αC

i = (1− γ)/n for all

i ∈ I− lead to a contradiction if I− is nonempty. Hence all the training vectors are in

the same class, and αC
i = 0 for all i. Thus,

∑n
i=1 αC

i = 0 = νmax. Furthermore, if all

the data are from the same class then αC = 0 is an optimal solution of (D′
2C) for all

C > 0.

In case 3, where λi − ξi = 0, we have that either λi = ξi 6= 0 or λi = ξi = 0 for

each i ∈ I+. However, λi = ξi 6= 0 leads to a contradiction because the conditions

(A.2)/(A.7) and (A.3)/(A.8) require both αC
i = 0 and αC

i = γ/n. Thus, λi = ξi = 0

and the KKT conditions involving λi and ξi impose no conditions on αC
i for i ∈

I+. Since αC
i = (1 − γ)/n for all i ∈ I−, and (1 − γ)n− ≤ γn+, we can satisfy

∑
i∈I+

αC
i =

∑
i∈I− αC

i = (1 − γ)n+/n. Thus,
∑n

i=1 αC
i = νmax. Furthermore, by

setting b = 1/(Cn), αC is an optimal solution of (D′
2C) for all C > 0.

Therefore, in all three cases we have that ν = νmax and that αC is an an optimal

solution of (D′
2C), for all C > 0. Hence, if αC is an an optimal solution of (D′

2C) and

for ν =
∑n

i=1 αC
i the optimal objective value of (D2ν) is zero, then ν = νmax and αC

is an an optimal solution of (D′
2C), for all C > 0. Combining this with Lemma 1 we

get that any α is an optimal solution of (D2ν) if and only if it is an optimal solution

for all (D′
2C), C > 0.

Lemma 3. Assume αC is any optimal solution of (D′
2C), then

∑n
i=1 αC

i is a contin-

uous decreasing function of C on (0,∞).

Proof. Again, the analogue of this lemma for (D′
C) is proved in [4]. Since the proof
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depends only on the form of the objective function and the analogues of Theorems A

and B and Lemma 2, we omit the proof and refer the reader to [4].

Using these lemmas, we are now ready to prove the equivalent of the main theorem:

Theorem C. Fix γ ∈ [0, 1] and let αC be any optimal solution of (D′
2C). Define

ν∗ = lim
C→∞

n∑
i=1

αC
i

and

ν∗ = lim
C→0

n∑
i=1

αC
i .

Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1. For any ν > ν∗, (D2ν) is infeasible. For any

ν ∈ (ν∗, ν∗], the optimal objective value of (D2ν) is strictly positive, and there exists

at least one C > 0 such that any α is an optimal solution of (D′
2C) if and only if it

is an optimal solution of (D2ν). For any ν ∈ [0, ν∗], (D2ν) is feasible with an optimal

objective value of zero (and a trivial solution).

Proof. From Lemma 3, and the fact that for all C, 0 ≤ ∑n
i=1 αC

i ≤ νmax, we know

that the above limits are well-defined and exist.

For any optimal solution of (D′
2C), we have that condition (A.1) holds:

n∑
j=1

αC
j yiyjk(xi,xj)− 1

Cn
+ b = λi − ξi for i ∈ I+

n∑
j=1

αC
j yiyjk(xi,xj)− 1

Cn
− b = λi − ξi for i ∈ I−.
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Assume first that b ≥ 0. In this case, since αC is bounded, when C is sufficiently

small, we will necessarily have λi − ξi < 0 for all i ∈ I+. Pick such a C. Since ξi

and λi are nonnegative, ξi > 0 for all i ∈ I+, and from condition (A.3), αC
i = γ/n for

all i ∈ I+. If γn+/n ≥ (1 − γ)n−/n, then this αC is feasible and
∑n

i=1 αC
i = νmax.

However, if γn+/n < (1 − γ)n−/n then we have a contradiction, and thus it must

actually be that b < 0. In this case, for C sufficiently small, λi−ξi < 0 for all i ∈ Ii. As

before, this now implies that αC
i = (1−γ)/n for all i ∈ I−, and thus

∑n
i=1 αC

i = νmax.

Hence, ν∗ =
∑n

i=1 αC
i = νmax, and from Proposition 1 we immediately know that

(D2ν) is infeasible if ν > ν∗.

For all ν ≤ ν∗, from Proposition 1 (D2ν) is feasible. From Lemma 3 we know

that
∑n

i=1 αC
i is a continuous decreasing function. Thus for any ν ∈ (ν∗, ν∗], there is

a C > 0 such that
∑n

i=1 αC
i = ν, and by Lemma 1 any α is an optimal solution of

(D2ν) if and only if it is an optimal solution for (D′
2C).

Finally, we consider ν ∈ [0, ν∗]. If ν < ν∗, (D2ν) must have an optimal objective

value of zero because otherwise, by the definition of ν∗, this would contradict Theorem

B. If ν = ν∗ = 0, the optimal objective value of (D2ν) is zero, as αν = 0 is a feasible

solution. If ν = ν∗ > 0, the fact that feasible regions of (D2ν) are bounded by

0 ≤ αi ≤ γ/n for i ∈ I+ and 0 ≤ αi ≤ (1− γ)/n for i ∈ I−, and Proposition 2 imply

that there exists a sequence {ανj}, ν1 ≤ ν2 ≤ · · · ≤ ν∗ such that ανj is an optimal

solution of (D2ν) with ν = νj,
∑n

i=1 α
νj

i = νj, and α∗ = limνj→ν∗ ανj exists. Since

∑n
i=1 α

νj

i = νj,
∑n

i=1 α∗i = limνj→ν∗
∑n

i=1 α
νj

i = ν∗. We also have that 0 ≤ α∗i ≤ γ/n
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for i ∈ I+, 0 ≤ α∗i ≤ (1 − γ)/n for i ∈ I−, and
∑n

i=1 yiα
∗
i = limνj→ν∗ yi

∑n
i=1 α

νj

i =

0 so α∗ is feasible to (D2ν) for ν = ν∗. However,
∑n

l,m=1 α∗l α
∗
mylymk(xl,xm) =

limνj→ν∗
∑n

l,m=1 α
νj

l α
νj
mylymk(xl,xm) = 0 as

∑n
l,m=1 α

νj

l α
νj
mylymk(xl,xm) = 0 for all νj.

Therefore the optimal objective value of (D2ν) is zero if ν = ν∗. Thus the optimal

objective value of (D2ν) is zero for all ν ∈ [0, ν∗].

Now suppose for the sake of a contradiction that the optimal objective value of

(D2ν) is zero but ν > ν∗. By Lemma 3 there exists a C > 0 such that, if αC is an

optimal solution of (D′
2C), then

∑n
i=1 αC

i = ν. From Lemma 2, ν = νmax = ν∗ = ν∗,

since
∑n

i=1 αC
i is the same for all C. This contradicts the assumption that ν > ν∗.

Thus the objective value of (D2ν) can be zero if and only if ν ≤ ν∗. In this case,

w = 0 and we say that the solution is trivial.
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